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Abstract 
This study investigates the suitability of three 

parameters continuous probability distributions-Burr 

Type XII 3P, Dagum Type I 3P and Log-Logistic 3P-in 

modeling secondary air pollutants: ozone (O₃), 

particulate matters (PM₁₀ and PM₂.₅) in 

Visakhapatnam, an urban region having rapid 

industrialization. By employing rigorous statistical 

techniques including maximum likelihood estimation 

(MLE) and bootstrapping, we estimate distribution 

parameters and validate model fit through diagnostic 

plots-skewness vs. kurtosis, P-P and Q-Q plots as well 

as goodness-of-fit test-statistics, such as Kolmogorov-

Smirnov(KS), Anderson-Darling(AD) and Cramér von 

Mises(CvM) tests. Additional, performance metrics 

including Akaike information criterion(AIC), Bayesian 

information criterion(BIC), evaluation metrics like 

mean absolute error(MAE), mean absolute percentage 

error(MAPE), mean squared error(MSE), root mean 

squared error(RMSE) and coefficient of 

determination(R²) and cross-validation, were also 

applied to ensure model robustness.  

 

Results indicate that the Burr Type XII 3P distribution 

most effectively models the high variability and skewed 

nature of O₃ concentrations, while the Dagum Type I 

3P distribution provides the best fit for PM₁₀ and both 

Burr Type XII 3P and Log-Logistic 3P distributions are 

suitable for PM₂.₅. These findings offer new insights 

into the behavior of secondary pollutants, supporting 

the development of robust air quality monitoring 

frameworks. R software facilitated all numerical 

analyses and visualizations of data suited to 

environmental data modeling. 
 

Keywords: Urbanization, Air Pollution, Statistical 

Distributions, Secondary Air Pollutants, Model Selection. 

 

Introduction 
Air pollution, often called the "silent killer," is a major global 

health crisis, contributing to an estimated seven million 

preventable deaths annually, as reported by the World Health 

Organization (WHO). Among the most harmful pollutants 

are PM₁₀ (particulate matter≤10microns), PM₂.₅ (particulate 

matter≤2.5microns) and O₃ (ozone) which penetrate deeply 

into the respiratory system and increasing the risk of severe 

health issues, such as cardiovascular disease, lung cancer 

and respiratory infections. While extensive research has 

focused on extreme pollution levels in megacities, a growing 

body of evidence suggests that mid-sized, rapidly 

industrializing cities also face substantial air quality 

challenges.  

 

Visakhapatnam, a coastal city in India experiencing rapid 

industrialization, exemplifies this trend. Industrial activities 

such as port operations, steel production and construction 

contribute to the release of pollutants, transforming primary 

emissions into secondary pollutants like O₃, PM₁₀ and PM₂.₅ 

through complex chemical reactions. While air pollution 

levels in this city are not as extreme as those of major 

metropolitan areas, they frequently exceed national ambient 

air quality standards and pose significant public health risks. 

Given its status as one of India's most polluted mid-sized 

cities, understanding pollutant trends and variability in 

Visakhapatnam are essential in developing effective air 

quality controls and public health strategies. 

 

Existing studies on air pollution modeling have applied 

various statistical distributions to analyze pollutant 

concentrations in different urban contexts. For instance, 

Gavriil et al10 found the Pearson type VI distribution to best 

fit PM10 and PM2.5 data in Athens, with inverse Gaussian, 

lognormal and Pearson type V also performing well.  

 

Noor et al15 found the gamma distribution best for PM10 in 

Nilai and log-normal best for Shah Alam, with both cities 

staying within MAAQG limits despite occasional 

exceedances in 2007. Benjamin et al3 demonstrated the 

superiority of the Dagum distribution over the Generalized 

Extreme Value (GEV) distribution for modeling 

tropospheric ozone (O₃) levels.  Ahmat et al2 found the GEV 

distribution most accurate for predicting PM10 

concentrations in Malaysia. Thupeng19 used the Burr-XII 

distribution to model daily maximum nitrogen dioxide levels 

in Gaborone, finding it superior to the Dagum and Log-

Logistic distributions.  

 

El-Shanshoury8 identified the Frechet distribution with the 

Hosking and Wallis plotting position as the best fit for TSP 
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and PM10 concentrations in Ain Sokhna. Jaffar et al11 

reviewed gamma, lognormal and Weibull distributions for 

modeling air pollution data, highlighting the need for 

accurate models to predict high pollution events and improve 

air quality management. Febriantikasari et al9 applied the 

Dagum distribution to simulate PM10 concentrations in 

Pekanbaru, Indonesia, concluding that the L-Moments 

method was the most effective for parameter estimation.  

 

Bhandari4 used a two-parameter lognormal distribution to fit 

PM10 data in Kathmandu, Nepal and found the method of 

moments provided the best fit for the observed 

concentrations. Warsono et al21 determined that generalized 

distributions, particularly the Generalized Log-Logistic, 

provided the best fit for PM2.5 concentrations during the 

COVID-19 pandemic in Jakarta. Omar16 found that the 

method of moments was the most effective parameter 

estimator for the lognormal distribution in predicting PM10 

concentrations in suburban areas, especially in Jerantut and 

Sungai Petani. In contrast, the uniformly minimum variance 

unbiased estimator demonstrated strong accuracy in Muar 

and Kuantan. Jaffar et al11 identified Nakagami and Gamma 

distributions as the best fits for ground-level ozone in 

Malaysian cities, with Nakagami suitable for Kuala 

Terengganu and Alor Setar and Gamma for Kota Bharu.  

 

Choopradit et al6 determined that inverse Gaussian and 

Pearson type V distributions were most suitable for PM2.5 

concentrations in Bangkok, highlighting that the 98th 

percentile of PM2.5 levels exceeded Thailand’s 24-hour 

threshold, indicating significant health risks. Kumar et al13 

examined seasonal trends in PM2.5 and PM10 in 

Visakhapatnam from January 2020 to December 2022, 

finding the highest levels in December 2020, with 

concentrations exceeding NAAQS limits in winter and 

improved air quality in the summer and monsoon seasons13.  

 

This study evaluates the fit of three flexible three-parameter 

distributions-Burr type XII 3P, Dagum type I 3P and Log-

Logistic 3P-for modeling daily mean levels of O₃, PM₁₀ and 

PM₂.₅ in Visakhapatnam. Chosen for their ability to capture 

the heavy-tailed and skewed characteristics of air pollutants, 

these distributions are tested using data from January 2018 

to December 2022 provided by the Andhra Pradesh Pollution 

Control Board. The model performance is assessed through 

various methods including skewness-kurtosis plots, PDFs, 

ECDFs, P-P and Q-Q plots and Maximum Likelihood 

Estimation (MLE) for parameter estimation.  

 

Bootstrapping generates confidence intervals and model 

validation is conducted via residual plots and goodness-of-

fit tests (K-S, A-D, CvM), alongside AIC and BIC metrics. 

Additional assessments including error metrics, kernel 

density estimation and cross-validation, further refine the 

model comparison. The study aims to identify the most 
suitable distribution for air quality modeling, supporting 

targeted policy interventions and public health strategies for 

mid-sized urban areas. 

Material and Methods 
Research Area and Data: This research study analyzes 

daily average ambient air quality data collected from January 

2018 to December 2022 by the Andhra Pradesh Pollution 

Control Board (APPCB) at the Continuous Ambient Air 

Quality Monitoring Station (https://pcb.ap.gov.in/) in 

Visakhapatnam (GVMC), an industrial city on India’s 

eastern coast. The city’s industrial activities including port 

operations and steel production, contribute to significant air 

pollution, making it an important site for air quality 

monitoring. The dataset includes daily measurements of 

secondary pollutants-ozone (O₃), PM10 and PM2.5, along 

with primary pollutants including CO, NO, NO₂, NOx, NH₃, 

SO₂ and volatile organic compounds (VOCs) such as xylene, 

toluene and benzene. Daily data from the five-year period 

were used to assess pollutants trends. Missing values were 

imputed via linear interpolation and outliers (values beyond 

three standard deviations) were handled through 

Winsorization. This dataset supports advanced statistical 

modeling (Burr type XII 3P, Log-Logistic 3P and Dagum 

type I 3P) to analyze secondary pollutant (O₃, PM₁₀ and 

PM₂.₅) variability in the industrial urban setting5. 

 

Methods: The analysis employed three probability density 

functions (PDFs)-Burr type XII 3P, Dagum type I 3P and 

Log-Logistic 3P distributions to model air pollutant 

concentrations. To evaluate the suitability of these models, 

several methods were used. Goodness-of-fit tests (GoF) 

including the Kolmogorov-Smirnov, Anderson-Darling and 

Cramér-von Mises tests, were conducted using R to assess 

how well the PDFs fit the data. Additionally, model 

performance was gauged using criteria such as Log-

Likelihood (LL), Akaike Information Criterion (AIC), 

Bayesian Information Criterion (BIC), Hannan-Quinn 

Information Criterion (HAIC), Consistent AIC (CAIC) and 

Adjusted BIC (ABIC). Model selection metrics, including 

Mean Absolute Error (MAE), Mean Squared Error (MSE), 

Root Mean Squared Error (RMSE), R-Squared and Cross-

Validation, were further utilized to compare the models. In 

addition, Kernel Density Estimation, residual analysis and 

diagnostic plots including PDF, ECDF, Q-Q and P-P plots 

were employed to provide a comprehensive assessment of 

the goodness of fit, ensuring a robust evaluation of the 

statistical models for pollutant concentration distribution.  

 

Statistical Distributions in Air Pollution: Statistical 

probability distributions are vital for modeling air pollution 

data, offering a robust framework to capture the inherent 

variability and trends in environmental quality. This study 

focuses on modeling the concentrations of ozone (O₃), 

particulate matter (PM₁₀ and PM₂.₅) using continuous three-

parameter (3P) distributions: Burr type XII 3P, Dagum type 

I 3P and Log-Logistic 3P. These distributions were chosen 

for their adaptability in capturing skewed, heavy-tailed data, 

which is typical of air pollutant distributions. Table 1 

presents the Cumulative Distribution Function (CDF, F(x)) 

and Probability Density Function (PDF, f(x)) for these 

distributions18.  
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Table 1 

The PDF and CDF of Three Parameter Distributions 

Distribution Synopsis PDF CDF Parameters 

Burr Type XII 

3P 

Models data with various 

shapes and is useful for 

skewed or heavy-tailed 

data. 

f(x; α, ω, λ) = 

 
α⋅ω⋅(x−λ)α−1

[1+(
x−λ

ω
)

α
]

α+1 

 F(x; α, ω, λ) = 

 1 − [1 + (
x−λ

ω
)

α
]

−∝

 

Where 𝑥 > 𝜆, 𝛼 >
0(Shape), 𝜔 > 0(Scale) 

and 𝜆 > 0 (Location). 

Dagum Type I 

3P 

Versatile in modeling 

income and wealth data, 

accounting for skewness 

and kurtosis14. 

f(x; δ, τ, ϑ) = 

 
δ⋅τ⋅xδ−1

ϑ[1+(
x

ϑ
)

δ
]

τ+1 

F(x; δ, τ, ϑ) = 

  [1 + (
x

ϑ
)

δ
]

−τ

 

Where 𝑥 > 0,𝛿 >
0 (Shape) 

𝜏 > 0(Shape) and 𝜗 > 0 

(Scale) 

Log-Logistic 

3P 

Suitable for modeling 

survival times and skewed 

data. 

f(x; η, β, γ) = 

 
η⋅β⋅(x−γ)η−1

[β+(x−γ)η]η+1 

F(x; η, β, γ) = 

 
1

1+(
β

x−γ
)

η 

Where 𝑥 > 𝛾,  η >
0(Shape), 

β > 0 (Scale), and 

 γ > 0(Location). 

 

Methods of Parameter Estimation: Parameter estimation 

was conducted using the maximum likelihood estimation 

(MLE) method, selected for its consistency and efficiency in 

environmental data modeling. MLE maximizes the 

likelihood function, allowing us to identify the parameter 

values that best align the chosen distribution with observed 

data. For each model, the likelihood function was 

constructed based on pollutant data and numerical 

optimization techniques were used to derive the parameters. 

 

To quantify variability and uncertainty, we employed the 

bootstrap resampling technique with 1,000 resamples. For 

each resample, MLE was recalculated to generate 95% 

confidence intervals for the parameters, offering insight into 

model stability. Narrower intervals indicate a more stable 

parameter estimate, enhancing the robustness of the fitted 

models. This approach also provided bias and standard error 

values, further validating model reliability. 

 

Method of Kernel Density Estimation (KDE): KDE is a 

non-parametric technique used to estimate the PDF of air 

pollutant concentrations, (O₃, PM₁₀, PM₂.₅) without 

assuming a specific distribution. It provides a smooth, 

continuous estimate of pollutant distributions from observed 

data, enabling detailed visualization of concentration 

patterns over time. The bandwidth, or smoothing parameter, 

is crucial in balancing data pattern capture and noise 

reduction, preventing over fitting or excessive smoothing. 

The density estimates at a point x is defined as:  

 

 𝑓(𝑥) =
1

𝑛ℎ
∑ 𝐾𝑛

𝑛=1 (
𝑥−𝑋𝑖

ℎ
) 

 

where K is the kernel function, h is the bandwidth, Xi is the 

data points and n is the sample size. Unlike parametric 

models such as Burr type XII 3P, Dagum type I 3P and Log-

Logistic 3P, which rely on predefined distributions, KDE 

adapts to the actual data, making it useful for detecting 

outliers and assessing model fit.  

 

In this study, KDE was employed to analyze the distribution 

of pollutant concentrations and to complement the 

evaluation of parametric models, offering an additional layer 

of insight into the behavior of air pollutants. 

 

Methods of Model Selection Criteria: After estimating 

parameters, each model was evaluated for its fit and 

predictive accuracy using a comprehensive set of selection 

criteria. These criteria balance model fit with complexity, 

ensuring that selected models to capture pollutant 

concentration distributions effectively without overfitting. 

 

Goodness-of-Fit-Tests: To rigorously evaluate the fit of 

statistical models to observed air pollution data, various 

goodness-of-fit tests were applied7. These tests compare the 

observed data against the expected values under the fitted 

model, providing a measure of how well the model captures 

the underlying distribution of the data.  

 
Kolmogorov-Smirnov (K-S) Test: KS test is sensitive to 

discrepancies in both the location and shape of the 

distributions, making it a versatile tool for assessing model 

adequacy across a broad range of distribution types. The K-

S test D is defined as: 

 

D = sup𝑥 ∣ Fn(x) − F(x) ∣, −∞ < 𝑥 < ∞ 

 

where Fn(x) is the ECDF and F(x) is the CDF of the models. 

A lower KS statistic and higher p-value indicate a close 

alignment between observed data and model fit. 

 

Anderson-Darling (A-D) Test: A-D test extends the K-S 

test by placing more weight on the tails of the distribution, 

making it particularly useful for detecting discrepancies in 

tail behaviour. The A-D test 𝐴2 is given by: 

 

 A2 = −n −
1

n
∑ [(2i − 1)(lnF(xi) + ln(1 − F(xn+1−i)))]n

i=1  

 

where n is the sample size, Xi are the ordered data points and 

𝐹(𝑥𝑖) is the CDF of the fitted model. A larger 𝐴2 value 

indicates a worse fit, especially in the tails. This test provides 

a comprehensive assessment of model fit by focusing on 

deviations in both central and tail areas.  



Research Journal of Chemistry and Environment________________________________________Vol. 29 (4) April (2025) 
Res. J. Chem. Environ. 

https://doi.org/10.25303/294rjce039056        42 

Cramer-von Mises Test: CvM test is the measuring the 

squared differences between the empirical and theoretical 

CDFs across the entire data range.  Unlike the K-S test, 

which focuses on deviations at specific points, it provides a 

global fit assessment. The CvM test W2is calculated as: 

 

 𝑊2 = ∫ (𝐹𝑛(𝑥) − 𝐹(𝑥))
2

𝑑𝐹(𝑥)
∞

−∞
 

 

where 𝐹𝑛(𝑥)is the empirical CDF and 𝐹(𝑥) is the theoretical 

CDF. A higher W2value indicates a greater deviation from 

the model. Significance is assessed by comparing the 

W2value to critical values from CvM tables or simulations. 

 

Methods of Graphical Validation: Graphical validation 

methods provide visual tools to assess the fit of statistical 

models to data, offering intuitive insights into model 

performance and potential discrepancies. 

 

Quantile-Quantile (Q-Q) Plots: Q-Q plot is a widely used 

graphical tool for evaluating how closely a dataset follows a 

specified distribution. It compares the quantiles of the 

observed data with those of the fitted distribution. In this 

plot, observed data values are plotted against the theoretical 

quantiles derived from the cumulative distribution function 

(CDF) of the fitted model. If the data align with the assumed 

distribution, the points will form a straight line, indicating a 

good fit. The process of constructing a Q-Q plot using n data 

points is defined as {xᵢ, F⁻¹(pᵢ)} where i=1, 2,…,n. Q-Q plots 

compare the quantiles of the observed data against the 

quantiles of the fitted distribution. Deviations from the 45-

degree line in a Q-Q plot reveal discrepancies between the 

observed and expected distributions, signaling areas where 

the model may not fit the data accurately. 

 

Probability-Probability (P-P) Plots: P-P plot is a graphical 

tool used to evaluate the goodness of fit between an 

empirical dataset and a specified theoretical distribution. It 

compares the cumulative distribution function (CDF) of the 

observed data with that of the fitted model by plotting the 

empirical probabilities against the corresponding theoretical 

probabilities. If the data align with the assumed distribution, 

the points will follow the 45-degree reference line, 

indicating a good fit. P-P plots are especially useful for 

identifying deviations from the expected distribution, 

particularly in the tails. 

 
Residual Plots: Residual plots are graphical tools used to 

assess the goodness of fit of a statistical model by analysing 

the differences between observed and predicted values 

(residuals). Typically, residuals are plotted against predicted 

values or another variable. A well-fitting model shows 

residuals randomly scattered around zero, indicating no 

systematic pattern.  

 

Residual plots help to detect issues like model 

misspecification, heteroscedasticity, or non-linearity. If 

patterns appear in the plot, it suggests areas for model 

improvement. These plots complement quantitative 

goodness-of-fit tests by providing visual insights into model 

adequacy. 

 
Methods of Model Performance Criteria: Model 

performance criteria are quantitative measures used to assess 

the accuracy and efficiency of statistical models in 

predicting pollution levels7. These metrics help to compare 

different models, ensuring the selection of one that balances 

complexity with accurate pollutant predictions.  

 

By evaluating these metrics, we can identify which model 

best captures the variability in pollutants like O₃, PM₁₀ and 

PM₂.₅. Table 2 provides the formulas and descriptions for all 

performance indicators. 

 

Methods of Model Evaluation Metrics: Model evaluation 

metrics are critical for assessing the predictive performance 

and generalizability of statistical models, especially for 

pollutant concentrations like O₃, PM₁₀ and PM₂.₅. Accuracy 

metrics closer to one indicate better performance while 

evaluation metrics nearer to zero suggest a better fit. Table 3 

lists the formulas and descriptions for all performance 

indicators. 

 

Results and Discussion 
Statistical Characteristics of O3, PM10 and PM2.5: Table 4 

presents the descriptive statistics for ozone (O₃), PM₁₀ and 

PM₂.₅ concentrations, based on 1,627 observations from 

January 1, 2018, to December 31, 2022, highlighting the 

distribution and variability of these pollutants over time1. 

 

Table 4 shows key statistics for ozone (O₃), PM₁₀ and PM₂.₅ 

concentrations from 2018–2022. Ozone has a low mean 

concentration (27.75µg/m³), well below the NAAQS 

standard (180µg/m³), but shows significant variability with 

occasional high levels (skewness: 2.02, kurtosis: 4.96). PM₁₀ 

exceeds the NAAQS daily limit (70µg/m³) with a mean of 

109.75µg/m³ and moderate variability (skewness: 1.14, 

kurtosis: 1.73). PM₂.₅ also exceeds the NAAQS standard 

(35µg/m³) with a mean of 45.26µg/m³, showing occasional 

spikes (skewness: 1.47, kurtosis: 2.92). The coefficient of 

variation indicates that ozone has the highest relative 

variability. These findings emphasize the need for stronger 

air quality controls, especially for ozone and PM₁₀, where 

safety threshold violations are more likely. 

 

Figures 1 and 2 illustrates daily mean concentrations of 

ozone (O₃), PM₁₀ and PM₂.₅ in Visakhapatnam (2018–2022) 

revealing significant variability and seasonal patterns, 

essential for selecting appropriate statistical models. O₃ 

shows peaks around 2019–2020, likely driven by 

photochemical reactions while PM₁₀ exhibits spikes due to 

localized pollution events like dust storms. PM₂.₅ shows 

periodic spikes from vehicular and industrial emissions16.  

 

These patterns underscore the importance of applying 

adaptable statistical models to capture the complex 

characteristics of pollutants in urban regions. 
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Table 2 

Model Information Criteria and their Formulas, Descriptions 

Criterion Description Formula Interpretation 

LL 

Log-Likelihood function measures 

how well the model explains the 

observed data, representing the 

probability of the data given the 

model's parameters. 

lnL(θ) 

Higher Log-Likelihood indicates a 

greater probability of the model's 

parameters being consistent with the 

observed data. 

AIC 

Akaike Information Criterion 

balances model fit and complexity by 

penalizing the number of parameters, 

thus helping to prevent overfitting 

2. k − 2. ln(L) 

Lower AIC indicate a better model, as 

they balance fit and complexity, favoring 

simpler models with comparable 

explanatory power. 

BIC 

Bayesian Information Criterion 

applies a stronger penalty for 

complexity than AIC, making it more 

suitable for larger datasets while 

promoting parsimony and good fit. 

k. ln(n) − 2. ln(L) 

Lower BIC indicates a more 

parsimonious model, particularly in 

large datasets, helping to prevent over 

fitting. 

HAIC 

Hannan-Quinn Information Criterion 

balances AIC and BIC, applying a 

milder penalty for complexity, 

making it suitable for moderately 

large samples. 

2. 𝑘. 𝑙𝑛(ln(𝑛)) − 2. ln(𝐿) 

Lower HQIC reflects a balance fit and 

complexity, with a moderate penalty, 

making it useful for considering both 

aspects. 

CAIC 

Consistent Akaike Information 

Criterion modifies AIC by applying a 

stronger penalty for model 

complexity, offering a more 

consistent criterion for model 

selection. 

(k + 1). ln(n) − 2. ln(L) 

Lower CAIC indicate a model that 

balances fit and complexity while 

accounting for sample size, making it 

robust across varying sample sizes. 

ABIC 

Adjusted Bayesian Information 

Criterion modifies BIC to better 

account for small sample sizes, 

improving model selection 

consistency by adjusting the penalty 

for model complexity 

k. ln(n) +
2. k2

n
− 2. ln(L) 

Lower ABIC indicate a more optimal 

model for smaller sample sizes, 

balancing fit and complexity with an 

adjusted penalty 

Notations: n: Sample size, k: Number of estimated parameters, L: Likelihood function, ln(L): Log-Likelihood and θ: model 

parameters. 

 

Table 3 

Model Error Metrics and Their Formula, Descriptions 

Metric Description Formula Interpretation 

MBE 

Mean Bias Error quantifies the average 

bias in predictions, revealing whether 

the model tends to overestimate or 

underestimate values. 

 
1

n
∑ (Pi − Oi)

n
i=1  

Measures average bias, with 

values closer to 0 indicating less 

bias in the model's predictions. 

MAE 

Mean Absolute Error quantifies the 

average magnitude of errors between 

predicted and actual values, without 

considering the direction of the errors. 

 
1

n
∑ |(Pi − Oi)|n

i=1  
Lower MAE indicates better 

model performance. 

MSE 

Mean Squared Error calculates the 

average of the squared differences 

between predicted and actual values, 

giving greater weight to larger errors. 

 
1

n
∑ (Pi − Oi)

2n
i=1  

Lower MSE indicates better 

accuracy. 

MdAE 

Median Absolute Error is the median of 

absolute errors, offering robustness to 

outliers and making it less sensitive to 

extreme values compared to MAE. 

median(|(Pi − Oi)|) 
Lower MdAE indicates that the 

model consistently performs. 
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MAPE 

Mean Absolute Percentage Error is the 

average of the absolute percentage 

errors between predicted and actual 

values, providing a clear measure of 

prediction error in percentage terms. 

 
1

n
∑ |

(Pi−Oi)

Oi
|n

i=1 × 100% 

Lower MAPE indicates better 

relative accuracy, with 

predictions closer to the actual 

values. 

RMSE 

Root Mean Squared Error is the square 

root of MSE, providing error magnitude 

in the same units as the data. 
 √

1

n
∑ (Pi − Oi)

2n
i=1  

Lower values indicate better 

accuracy. 

NRMSE 

Normalized RMSE is RMSE 

normalized by the mean of the observed 

data. 

 
RMSE

mean(Oi)
 

Lower values indicate better 

accuracy relative to the data 

range or mean. 

CV-RMSE 

Coefficient of Variation of RMSE is 

RMSE normalized by the mean of 

observed values, expressed as a 

percentage. 

 
RMSE

mean(Oi)
× 100% 

Lower values indicate better 

model performance relative to 

mean of the observed data. 

R² 

Coefficient of Determination measures 

the proportion of the variance in the 

dependent variable that is predictable 

from the independent variables. 

 
∑ (Oi−O̅)2n

i=1 −∑ (Pi−Oi)2n
i=1

∑ (Oi−O̅)2n
i=1

 
Values closer to 1 indicate a 

better fit. 

Cross-

Validation 

(K-Fold) 

A method to evaluate model predictive 

performance and generalizability by 

partitioning the dataset into k subsets. 

The model is trained on k−1 subsets and 

tested on the remaining subset. This 

process repeats k times, ensuring each 

subset serves as the test set once22. 

The average performance metrics 

across all iterations provide a robust 

measure of the model's ability to 

generalize to unseen data, helping 

mitigate overfitting. 

The model’s generalization 

capability is assessed to ensure 

it isn't over fitted to the dataset. 

Lower variance in performance 

metrics across folds indicates 

greater stability. 

Notes: 𝑃𝑖: Predicted value, 𝑂𝑖: Observed value, n: Number of observations, 𝑃̅: Mean of predicted values, 𝑂̅: Mean of observed 

values. 

 

Table 4 

Descriptive Statistics Summary for O3, PM10 and PM2.5 Concentrations 

Statistic 
Air Pollutant 

O3 PM10 PM2.5 

Sample Size (n) 1,627 1627 1627 

Minimum (µg/m³) 1.9 12 4 

Maximum (µg/m³) 160.2 376 207 

1st Quartile 12.2 74 26 

Median (µg/m³) 20.7 101 37 

Mean (µg/m³) 27.75 109.75 45.26 

3rd Quartile 34 133 58 

Range (µg/m³) 158.3 364 203 

Standard Error of Mean  0.59 1.31 0.7 

Lower 95% CI for Mean 26.6 107.19 43.89 

Upper 95% CI for Mean 28.9 112.31 46.63 

Variance 556.07 2775.9 790.29 

Covariance 0.85 0.48 0.62 

Standard Deviation (µg/m³) 23.58 52.69 28.11 

Skewness 2.02 1.14 1.47 

Kurtosis 4.96 1.73 2.92 

Trimmed Mean (10%) (µg/m³) 23.41 104.02 41.47 

IQR 21.8 59 32 

Median Absolute Deviation (µg/m³) 14.53 43 22.24 
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Figure 1: Individual Time Series Plot of Daily Mean Concentrations of O₃, PM₁₀ and PM₂.₅. 

 

 
Figure 2: Combined Time Series Plot of Daily Mean Concentrations of O₃, PM₁₀ and PM₂.₅. 

Figures 1 and 2: Time Series Plot of Daily Mean Concentrations of Ozone (O₃), Particulate Matter (PM₁₀ and PM₂.₅) 

in Visakhapatnam (2018–2022). 

 

Table 5 

Descriptive Parameters of Empirical Distribution for Non-Censored Data: O3, PM10 and PM2.5 Concentrations. 

Pollutant Min Max Median Mean Est.Sd Est.Skewness Est.Kurtosis 

O3 1.9 160.2 20.7 27.75 23.58 2.03 7.99 

PM10 12 376 101 109.75 52.69 1.14 4.74 

PM2.5 4 207 37 45.26 28.11 1.47 5.94 

 

The Burr type XII 3P, Dagum type I 3P and Log-Logistic 3P 

distributions were chosen to capture these behaviors. Heavy 

tails in O₃, PM₂.₅ concentrations align with Burr Type XII 3P 

and Log-Logistic 3P models, while extreme values in PM₁₀ 

fit the Dagum type I 3P distribution. These insights explain 

the models' comparative performance based on metrics like 

AIC, BIC and goodness-of-fit-tests, underscoring the need 

for advanced distributions to model pollutant variability. 

 

Table 5 presents descriptive parameters for O₃, PM₁₀ and 

PM₂.₅. O₃ displays significant right estimated skewness 

(2.03) and high kurtosis (7.99), indicating a heavy-tailed 
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distribution with potential outliers. PM₁₀ shows moderate 

estimated skewness (1.14) and kurtosis (4.74), suggesting a 

more symmetrical distribution compared to O₃. PM₂.₅ falls 

between the two, with an estimated skewness of 1.47 and 

kurtosis of 5.94, indicating a right-skewed distribution but 

less extreme than O₃. These variations suggest that O₃ may 

require flexible distributions like Burr type XII 3P or Log-

logistic 3P, while PM₁₀ could be better modeled by the 

Dagum type I 3P. PM₂.₅ may benefit from a combination of 

these approaches. 

 

Figure 3 displays Cullen and Frey graphs for O₃, PM₁₀ and 

PM₂.₅, offering insights for selecting appropriate 

distributions to model these air pollutants. The graph for O₃ 

shows high skewness and kurtosis, suggesting that Burr type 

XII 3P and Log-logistic 3P distributions are suitable due to 

their capacity to handle heavy tails and significant 

asymmetry. PM₁₀ graph indicates moderate skewness and 

kurtosis, making Dagum type I 3P distribution a good fit for 

this pollutant. In contrast, PM₂.₅ graph mirrors O₃, with high 

skewness and kurtosis, indicating that Burr type XII 3P and 

Log-logistic 3P distributions are also appropriate for PM₂.₅. 

Overall, while the Dagum type I 3P is more suitable for 

PM₁₀, Burr type XII 3P and Log-logistic 3P distributions are 

better suited for O₃ and PM₂.₅, reflecting their distinct 

statistical properties. 

 

Parameter Estimates and Confidence Intervals for Each 

Model Distribution: The Maximum Likelihood Estimation 

(MLE) method was employed for parameter estimation of 

each model, with computations performed using R software. 

Table 6 illustrated the estimated parameters and standard 

errors for each advanced statistical distribution. The Burr 

type XII 3P indicates heavy tails and substantial variability 

for ozone, significant spread for PM₁₀ and moderate 

dispersion for PM₂.₅. The Log-Logistic 3P suggests lighter 

tails for ozone, reduced variability for PM₁₀ and somewhat 

heavier tails for PM₂.₅. The Dagum type I 3P exhibits 

significant right skewness and heavy tails for ozone, high 

variability for PM₁₀ and moderate spread with substantial 

skewness for PM₂.₅. These findings highlight the importance 

of selecting appropriate distributions for accurate air quality 

modeling and effective management. 

 

 
Figure 3: Cullen and Frey Graphs for Assessing Skewness vs. Kurtosis in O3, PM10 and PM2.5 Data  

for Distribution Fitting. 

 

Table 6 

Estimated Parameter Values of each Distribution for O3, PM10 and PM2.5 using MLE 

Distributions Air 

Pollutants 

Parameter 

1 

Std. 

Error 1 

Parameter 

2 

Std. 

Error 2 

Parameter 

3 

Std. 

Error 3 

Burr Type XII 

3P 

O3 2.1627 0.0895 0.4190 0.0316 14.7275 0.5073 

PM10 3.1679 0.1177 0.1916 0.0176 73.4368 1.2175 

PM2.5 2.6883 0.1212 0.3020 0.0275 27.2696 0.7402 

Log-Logistic 

3P 

O3 0.4993 0.0138 2.9259 0.0262 1.6352 0.2329 

PM10 0.2764 0.1103 4.5909 0.0325 0.9004 2.8336 

PM2.5 0.3673 0.0142 3.5837 0.0339 1.7618 0.9798 

Dagum Type I 

3P 

O3 2.1326 0.0894 18.6112 1.5456 1.1532 0.1304 

PM10 4.2431 0.1711 114.4079 3.5039 0.6944 0.0558 

PM2.5 2.7935 0.1088 36.1097 2.0832 1.0957 0.1121 
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Table 7 presents the 95% confidence intervals (CIs) for each 

parameter across the Burr type XII 3P, Log-Logistic 3P and 

Dagum type I 3P distributions in modeling for O₃, PM₁₀ and 

PM₂.₅. The CIs for O₃ parameters in the Burr type XII 3P 

distribution are relatively narrow, indicating moderate 

variability (Shape1: 1.9873–2.3381, Shape2: 0.3571–

0.4809, Scale: 13.7333–15.7218). In contrast, the intervals 

for PM₁₀ parameters are broader, suggesting higher 

uncertainty (Shape1: 2.9371–3.3987, Shape2: 0.1570–

0.2261, Scale: 71.0506–75.8230) while PM₂.₅ CIs reflect 

intermediate variability. The Log-Logistic 3P distribution 

shows tighter CIs for O₃ (Shape: 0.4723–0.5263, Scale: 

2.8745–2.9772) but broader intervals for PM₁₀ and PM₂.₅, 

especially for the threshold parameter (PM₁₀: -4.6535 to 

6.4542; PM₂.₅: -0.1585 to 3.6822).  

 

The Dagum type I 3P distribution exhibits moderate 

variability, with the widest CIs for PM₁₀ (Shape1.a: 3.9077–

4.5784, Scale: 107.5404–121.2755, Shape2.p: 0.5850–

0.8037) and narrower intervals for PM₂.₅. Overall, the Burr 

type XII 3P distribution provides more precise parameter 

estimates, while the Log-Logistic 3P shows significant 

variability in the threshold parameter and the Dagum type I 

3P demonstrates moderate uncertainty, particularly for PM₁₀. 

 

Table 7 

Confidence Intervals for each Distributions and Pollutants (O3, PM10 and PM2.5) using MLE 

Distributions Parameter 
O3 

(2.5%CI) 

O3 

(97.5%CI) 

PM10 

(2.5%CI) 

PM10 

(97.5%CI) 

PM2.5 

(2.5%CI) 

PM2.5 

(97.5%CI) 

Burr Type 

XII 3P 

Shape1 1.9873 2.3381 2.9371 3.3987 2.4507 2.9259 

Shape2 0.3571 0.4809 0.1570 0.2261 0.2480 0.3559 

Scale 13.7333 15.7218 71.0506 75.8230 25.8188 28.7204 

Log-Logistic 

3P 

Shape 0.4723 0.5263 0.2548 0.2980 0.3394 0.3951 

Scale 2.8745 2.9772 4.5272 4.6545 3.5173 3.6501 

Threshold 1.1789 2.0916 -4.6535 6.4542 -0.1585 3.6822 

Dagum Type 

I 3P 

Shape1.a 1.9573 2.3078 3.9077 4.5784 2.503 3.0067 

Scale 15.5819 21.6406 107.5404 121.2755 32.0267 40.1928 

Shape2.p 0.8977 1.4088 0.5850 0.8037 0.8760 1.3155 

 

Table 8 

Bootstrap Parameter Estimates and Confidence Intervals for Each Pollutant across Model Distributions 

Pollutant Distribution Parameter Original Estimate Bias Std. Error 95% CI 

Ozone(O₃) 

Burr Type XII 3P 

Shape1 2.1627 0.0007 0.075 (2.026, 2.318) 

Shape2 0.419 -0.0014 0.0243 (0.3733, 0.4655) 

Scale 14.7275 0.0183 0.4821 (13.73, 15.63) 

Log-Logistic 3P 

Shape 0.4994 0.0032 0.0163 (0.4722, 0.5365) 

Scale 2.9255 -0.0051 0.031 (2.851, 2.975) 

Threshold 1.6377 0.0707 0.3109 (1.168, 2.409) 

Dagum Type I 3P 

Shape1 2.1326 0.0068 0.0793 (1.985, 2.310) 

Shape2 1.1532 0.0007 0.1089 (0.972, 1.409) 

Scale 18.6112 0.0767 1.3612 (15.75, 21.17) 

PM₁₀ 

Burr Type XII 3P 

Shape1 3.1679 0.005 0.1141 (2.950, 3.418) 

Shape2 0.1916 -0.0002 0.0141 (0.1633, 0.2176) 

Scale 73.4368 0.0087 1.1019 (13.73, 15.63) 

Log-Logistic 3P 

Shape 0.2794 -0.0405 0.0266 (0.2004, 0.2857) 

Scale 4.581 0.1499 0.1011 (4.565, 4.878) 

Threshold 1.8152 -15.743 10.8815 (-30.91, 1.92) 

Dagum Type I 3P 

Shape1 4.2431 0.0046 0.1999 (3.965, 4.608) 

Shape2 0.6944 0.0146 0.3558 (0.6028, 0.7965) 

Scale 114.408 -0.2609 4.2554 (108.0, 120.5) 

PM₂.₅ 

Burr Type XII 3P 

Shape1 2.6883 0.0099 0.1231 (2.476, 2.948) 

Shape2 0.302 0.0005 0.0251 (0.2519, 0.3505) 

Scale 29.1537 0.001 1.1009 (25.73, 29.04) 

Log-Logistic 3P 

Shape 0.3689 0.0053 0.0137 (0.3443, 0.3900) 

Scale 3.5732 -0.0308 0.0652 (3.523, 3.644) 

Threshold 1.835 0.0368 0.5021 (0.195, 3.415) 

Dagum Type I 3P 

Shape1 2.846 0.0103 0.1328 (2.630, 2.989) 

Shape2 1.138 -0.0326 0.2698 (0.929, 1.326) 

Scale 36.0377 -0.6462 2.9655 (32.27, 40.02) 
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Table 8 presents bootstrap analysis results, identifying the 

Burr type XII 3P, Dagum type I 3P and Log-Logistic 3P 

distributions as the most reliable models for predicting O₃, 

PM₁₀ and PM₂.₅ concentrations. All models exhibit low bias 

and tight confidence intervals, making them strong choices 

for air pollutant modeling. The Burr type XII 3P model 

showed the highest stability for O₃, while the Dagum type I 

3P and Log-Logistic 3P models followed closely. For PM₁₀, 

the Dagum type I 3P model provided the most reliable 

estimates, though the Log-Logistic 3P showed instability in 

its threshold parameter.  

 

For PM₂.₅, the Burr type XII 3P performed well, while the 

Log-Logistic 3P exhibited significant variability. Overall, 

the Log-Logistic 3P distribution displayed greater 

instability, particularly in threshold parameters, indicating a 

need for refinement in PM₁₀ and PM₂.₅ modeling. These 

findings are valuable for selecting effective models in air 

quality prediction for Visakhapatnam.

 

 
Figure 4: Empirical and Theoretical Comparisons of O3 Concentrations with Burr Type XII 3P, Log-Logistic 3P and 

Dagum Type I 3P Distributions 

 

 
Figure 5: Empirical and Theoretical Comparisons of PM₁₀ Concentrations through Burr Type XII 3P, Log-Logistic 

3P and Dagum Type I 3P Distributions 

 

 
Figure 6: Empirical and Theoretical Comparisons of PM₂.₅ Concentrations Using Burr Type XII 3P, Log-Logistic 3P 

and Dagum Type I 3P Distributions 
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Figures 4, 5 and 6 analyze the empirical and theoretical fits 

of O₃, PM₁₀ and PM₂.₅ concentrations using Burr type XII 

3P, Log-Logistic 3P and Dagum type I 3P distributions. 

Across all three figures, the probability density functions 

(PDFs) indicate that while all models capture the overall data 

trend, Burr type XII 3P and Dagum type I 3P provide 

superior accuracy, particularly in the tails. The cumulative 

distribution functions (CDFs) further confirm this pattern, 

with these two distributions aligning more closely with 

empirical data at the extremes. The Q-Q plots show that all 

models fit central quantiles well but highlight the superior 

performance of Burr type XII 3P and Dagum type I 3P in 

capturing extreme values. 

 

Similarly, the P-P plots validate overall fitting accuracy, with 

these two distributions consistently outperforming Log-

Logistic 3P for extreme pollutant concentrations. These 

findings emphasize the suitability of Burr type XII 3P and 

Dagum type I 3P distributions for modeling pollutant 

concentrations, particularly in scenarios requiring precise 

tail behavior representation, such as environmental risk 

assessments and air quality modeling. Table 9 analyzes the 

distributions of air pollutants (O₃, PM₁₀ and PM₂.₅) using 

KDE and various distribution models, revealing distinct 

distribution characteristics. For O₃, the actual data 

(bandwidth 3.337) shows a mean of 81.05μg/m³, ranging 

from -8.11 to 125.63μg/m³. The Burr type XII 3P model 

(bandwidth 3.154) predicts a higher mean of 309.83μg/m³ 

and a maximum of 627.81μg/m³, indicating strong right 

skew.  

 

The Dagum type I 3P model (bandwidth 3.155) offers a 

lower predicted mean of 438.98μg/m³. In contrast, the Log-

Logistic 3P model (bandwidth 3.178) significantly 

overestimates O₃ concentrations, predicting a median of 

1,210.71μg/m³ and a maximum of 2,429.16μg/m³, making it 

unsuitable. For PM₁₀, empirical data (bandwidth 9.031) 

reveals a mean of 194μg/m³, ranging from -15.09 to 

403.09μg/m³. The Burr type XII 3P model (bandwidth 

9.164) predicts a mean of 291.48μg/m³, while the Dagum 

type I 3P model (bandwidth 8.867) shows a mean of 

358.27μg/m³. Both overestimate central tendencies but are 

more realistic than the Log-Logistic 3P model (bandwidth 

9.069), which predicts a median of 732.99 μg/m³ and a 

maximum of 1,485.41 μg/m³. For PM₂.₅, the actual data 

(bandwidth 4.898) has a mean of 105.5μg/m³, ranging from 

-10.69 to 221.69μg/m³. The Burr type XII 3P model 

(bandwidth 4.468) predicts a mean of 237.50μg/m³ while the 

Dagum type I 3P model (bandwidth 4.425) yields a higher 

mean of 337.81μg/m³. The Log-Logistic 3P model 

(bandwidth 4.436) again inflates the median (647.2μg/m³) 

and maximum (1,305μg/m³) values, indicating an unsuitable 

fit. Overall, these results highlight the variability in pollutant 

distributions across models and the importance of selecting 

appropriate models for accurate representation. 
 

Figure 7 presents KDE comparisons of observed and 

predicted concentrations for O₃, PM₁₀ and PM₂.₅.  

 O₃ (left panel): All distributions capture the lower range 

(0–50µg/m³) well, with Burr type XII 3P and Log-

Logistic 3P performing best near the peak. Dagum type I 

3P excels in the tail region above 100 µg/m³. 

 PM₁₀ (middle panel): Burr type XII 3P and Dagum type 

I 3P closely match peak density, while Log-Logistic 3P 

diverges slightly at mid-range concentrations. Dagum 

Type I 3P effectively models the right tail above 

200µg/m³, indicating its robustness for extremes. 

 PM₂.₅ (right panel): All distributions align around the 

peak (20–50µg/m³), with Burr type XII 3P, Dagum type 

I 3P and Log-Logistic 3P performing better for high 

concentrations (>100µg/m³).  

 

Figure 8 illustrates residuals for O₃, PM₁₀ and PM₂.₅ using 

the Burr type XII 3P, Log-Logistic 3P and Dagum type I 3P 

distributions. 

 O₃ (top row): Burr type XII 3P and Dagum type I 3P 

show tightly clustered residuals around zero, indicating 

a good fit, while Log-Logistic 3P shows a slightly wider 

spread, particularly between indices 500–1000. 

 PM₁₀ (middle row): All distributions perform well, but 

Burr type XII 3P and Dagum type I 3P exhibit tighter 

clustering around zero, with Log-Logistic 3P showing 

larger deviations at higher indices. 

 PM₂.₅ (bottom row): Burr type XII 3P and Dagum type 

I 3P maintain close clustering around zero, while Log-

Logistic 3P displays more variability and occasional 

outliers. 

 

Figure 9 displays diagnostic plots for Burr type XII 3P, Log-

Logistic 3P and Dagum type I 3P models applied to O₃ 

concentrations, including residuals vs. predicted values, 

histograms, Q-Q plots and scale-location plots.  

 Residuals are symmetrically scattered around zero, 

indicating a good model fit. 

 Q-Q plots confirm normality, with slight tail deviations. 

 Scale-location plots reveal a minor increase in residual 

spread with higher fitted values, suggesting mild 

heteroscedasticity.  

 

Figure 10 shows diagnostic plots for PM₁₀ concentrations 

using Burr type XII 3P, Log-Logistic 3P and Dagum type I 

3P models. 

 Residuals vs. Predicted Values: Residuals are 

randomly distributed around zero, indicating strong 

model performance. 

 Histograms: Residuals are tightly centered near zero, 

suggesting a good fit, though with slight overfitting 

potential. 

 Q-Q Plots: Normality is largely confirmed, with minor 

deviations. 

 Scale-Location Plots: Slight increases in residual spread 

indicate mild heteroscedasticity. 
 

These results suggest the models fit PM₁₀ concentrations 

well with minor variability. 
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Table 9 

Summary of KDE for O3, PM10 and PM2.5 
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Figure 7: Kernel Density Estimation Comparisons for O3, PM10 and PM2.5 vs. Burr Type XII 3P, Log-Logistic 3P and 

Dagum Type I 3P Distributions 

 

 
Figure 8: Residual Analysis for O3, PM10 and PM2.5 Using the Burr Type XII 3P, Log-Logistic 3P and  

Dagum Type I 3P Distributions 

 

Figure 11 presents diagnostic plots for PM₂.₅ concentrations 

using Burr type XII 3P, Log-Logistic 3P and Dagum type I 

3P models. 

 Residuals vs. Predicted Values: Residuals are 

randomly distributed around zero, showing effective 

model performance. 

 Histograms: Residuals are centered near zero, indicating 

a good fit with minor precision concerns. 

 Q-Q Plots: Residuals align with normality. 

 Scale-Location Plots: Slight residual spread increase 

suggests mild heteroscedasticity. 

 

Goodness-of-Fit-tests and their p-values: Selecting an 

accurate distribution model for pollutants like O₃, PM₁₀ and 

PM₂.₅ is crucial for reliable predictions. This study compares 

the three-parameter Burr type XII, Log-Logistic and Dagum 

type I distributions using K-S, C-VM and A-D tests. The p-

values from these tests indicate how well the observed data 

fits each model, helping to identify the best distribution for 

each pollutant. Table 10 summarizes these findings. 

 

The analysis presented in table 10 evaluates the suitability of 

different distributions for modeling air pollutant 

concentrations.  For O₃, the Burr type XII 3P distribution is 

the best fit, with lower KS (0.0245), CVM (0.1198) and AD 

(1.7585) statistics and higher p-values (0.2819, 0.4964, 

0.1252), indicating a close match with the observed data. For 

PM10, the Dagum type I 3P distribution shows the strongest 

fit, with the lowest test statistics (KS=0.0185, CVM=0.0943, 

AD=0.8719) and the highest p-values (0.6326, 0.6136, 

0.4319).  
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Figure 9: Diagnostic Plots for Burr Type XII 3P, Log-Logistic 3P and Dagum Type I 3P Models  

for O₃ Concentrations 

 

 
Figure 10: Diagnostic Plots for Burr Type XII 3P, Log-Logistic 3P and Dagum Type I 3P Models  

for PM₁₀ Concentrations 

 

Table 10 

Goodness of Fit Statistics and their p-values for O3, PM10 and PM2.5 over each distributions 

Air 

Pollutant 

Distributions KS 

(D) 

CVM 

(W²) 

AD 

(A²) 

p-value 

(KS) 

p-value 

(CVM) 

p-value 

(AD) 

O3 Burr Type XII 3P 0.0245 0.1198 1.7585 0.2819 0.4964 0.1252 

Log-Logistic 3P 0.0279 0.1560 1.9490 0.1582 0.3717 0.0980 

Dagum Type I 3P 0.0255 0.1448 1.8230 0.2390 0.4059 0.1152 

PM10 Burr Type XII 3P 0.0216 0.1613 1.1536 0.4332 0.3570 0.2859 

Log-Logistic 3P 0.0244 0.1872 1.8744 0.2861 0.2936 0.1078 

Dagum Type I 3P 0.0185 0.0943 0.8719 0.6326 0.6136 0.4319 

PM2.5 Burr Type XII 3P 0.0491 0.6635 3.8820 0.0008 0.0156 0.0099 

Log-Logistic 3P 0.0399 0.4657 3.0548 0.0113 0.0487 0.0257 

Dagum Type I 3P 0.0402 0.4901 3.1655 0.0103 0.0422 0.0226 
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Figure 11: Diagnostic Plots for Burr Type XII 3P, Log-Logistic 3P and Dagum Type I 3P Models  

for PM₂.₅ Concentrations 

 

Table 11 

Model Selection Results for O₃, PM₁₀ and PM₂.₅. 

Pollutants Distributions LL AIC BIC HQIC CAIC ABIC 

O3 Burr Type XII 3P -6843.409 13692.82 13709 13698.82 13712 13709.00 

Log-Logistic 3P -6835.94 13677.88 13694.06 13683.88 13697.06 13694.07 

Dagum Type I 3P -6842.995 13691.99 13708.17 13697.99 13711.17 13708.18 

PM10 Burr Type XII 3P -8591.42 17188.84 17205.02 17194.84 17208.02 17205.03 

Log-Logistic 3P -8603.301 17212.60 17228.79 17218.61 17231.79 17228.79 

Dagum Type I 3P -8592.983 17191.97 17208.15 17197.97 17211.15 17208.15 

PM2.5 Burr Type XII 3P -7422.437 14850.87 14867.06 14856.88 14870.06 14867.06 

Log-Logistic 3P -7422.652 14851.3 14867.49 14857.31 14870.49 14867.49 

Dagum Type I 3P -7423.451 14852.90 14869.08 14858.91 14872.08 14869.09 

 

In contrast, for PM2.5, the Log-Logistic 3P distribution, 

despite showing significant deviations (KS (0.0399) p-value: 

0.0113, CVM (0.4657) p-value: 0.0487, AD (3.0548) p-

value: 0.0257), exhibited relatively lowest test statistics and 

higher p-values compared to the Burr type XII 3P model, 

indicating a better fit overall. These results indicate that 

alternative customizing approaches may be necessary for 

PM2.5. Overall, the findings emphasize the importance of 

selecting appropriate distributions based on rigorous 

statistical tests to achieve accurate air quality pattern. 

 
Model Selection Criteria: The optimal distribution for O₃, 

PM₁₀ and PM₂.₅ concentrations is identified using model 

selection criteria assessing both fit accuracy and model 

complexity. This study compares three-parameter 

distributions-Burr type XII 3P, Log-Logistic 3P and Dagum 

type I 3P based on metrics such as Log-Likelihood (LL), AIC 

and BIC and other metrics as shown in table 11. These 

criteria guide the selection of the most balanced model for 

each pollutant17.  

 

Table 11 highlights the best-fitting distributions for air 

pollutant concentrations based on selection criteria: 

 O₃: Log-Logistic 3P, with the lowest AIC (13677.88), 

BIC (13694.06) and other metrics, offers the best 

balance of fit and complexity. 

 PM₁₀: Burr type XII 3P is optimal, showing the lowest 

AIC (17188.84), BIC (17205.02) and related values, 

indicating the best fit. 

 PM₂.₅: Burr type XII 3P again proves most suitable, 

with minimum AIC (14850.87), BIC (14867.06) and 

others, accurately capturing PM₂.₅ data. 

 

These results underscore the importance of model selection 

criteria in reliable modeling pollutant concentrations. 

 
Model Error Metrics: Table 12 provides comprehensive 

selection metrics for evaluating the fit of Burr Type XII 3P, 

Log-Logistic 3P and Dagum type I 3P distributions to model 

O₃, PM₁₀ and PM₂.₅ concentrations. Metrics include MBE, 

MAE, MSE, MdAE, MAPE, RMSE, NRMSE, CV-RMSE 

and R², all of which assess model accuracy and predictive 

capability. These metrics collectively offer detailed insights 

into each model's performance, facilitating precise 

distribution selection for pollutant concentration data20. 
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Table 12 highlights distinct distribution preferences for 

modeling air pollutants: 

 O₃: The Burr type XII 3P distribution shows the lowest 

errors (MBE: -1.3e-15, MAE: 5.6e-15, MSE: 3.4e-28) 

and high consistency, despite a low R², indicating an 

optimal fit for O₃ data. 

 PM₁₀: The Dagum type I 3P distribution performs best 

with minimal errors (MBE: -2.7e-15, MAE: 1.6e-14, 

MSE: 1.2e-27) and reliable metrics, proving suitable for 

PM₁₀. 

 PM₂.₅: Dagum type I 3P provides the most accurate fit 

overall for PM₂.₅, despite the Log-Logistic 3P models 

lower RMSE and NRMSE in some aspects. 

These findings underscore the importance of using multiple 

metrics to determine the best-fitting model for accurate air 

quality analysis: Burr type XII 3P for O₃, Dagum type I 3P 

for PM₁₀ and Dagum type I 3P for PM₂.₅.  

 

Model Selection with Cross-Validation:  The cross-

validation process evaluated the performance of the Burr 

type XII 3P, Dagum type I 3P and Log-Logistic 3P 

distributions for O₃, PM₁₀ and PM₂.₅. Each dataset was split 

into 70% for training and 30% for testing to assess model fit 

and predictive accuracy. Performance was measured using 

metrics such as Log-Likelihood (L-L), AIC, BIC, MSE, 

MAE, RMSE, MedAE, MAPE, R² and goodness-of-fit tests 

(KS, CVM and AD Tests), as displayed in table 13. 

 

Table 12 

Model Error Metrics for O3, PM10 and PM2.5 vs. Each Model Distribution 

Model 

Metrics 

O3 PM10 PM2.5 

Burr 

Type XII 

3P 

Log-

Logistic 

3P 

Dagum 

Type I 3P 

Burr 

Type XII 

3P 

Log-

Logistic 

3P 

Dagum 

Type 

I 3P 

Burr 

Type XII 

3P 

Log-

Logistic 

3P 

Dagum 

Type 

I 3P 

MBE -1.3e-15 -8.7e-16 6.6e-16 -2.7e-15 -2.2e-18 2.6e-15 2.4e-15 1.4e-15 -7.9e-16 

MAE 5.6e-15 9.0e-15 5.3e-15 1.6e-14 3.2e-14 9.4e-15 7.1e-15 9.3e-15 5.1e-15 

MSE 3.4e-28 1.2e-27 2.7e-28 1.2e-27 4.5e-27 1.5e-27 5.9e-28 1.3e-27 3.2e-28 

MdAE 1.8e-15 1.8e-15 8.9e-16 7.1e-15 2.8e-14 0.0e+00 3.6e-15 3.6e-15 0.0e+00 

MAPE 1.8e-14 1.7e-14 1.1e-14 2.2e-14 2.5e-14 5.6e-15 1.7e-14 1.4e-14 6.6e-15 

RMSE 1.8e-14 3.5e-14 1.7e-14 3.5e-14 6.7e-14 3.9e-14 2.4e-14 3.6e-14 1.8e-14 

NRMSE 1.2e-16 2.2e-16 1.0e-16 9.5e-17 1.8e-16 1.1e-16 1.2e-16 1.8e-16 8.8e-17 

CV-RMSE 6.6e-16 1.3e-15 6.0e-16 3.1e-16 6.1e-16 3.6e-16 5.3e-16 7.9e-16 4.0e-16 

R2 -1.6e+30 -4.5e+29 -2.0e+30 -2.3e+30 -6.2e+29 -1.8e+30 -1.3e+30 -6.1e+29 -2.5e+30 

 

Table 13 

Cross-Validation Summary for O3, PM10, PM2.5 across Each Distribution 

Model  

Metric 

O3 PM10 PM2.5 

Burr  

Type XII  

3P 

Dagum 

Type I  

3P 

Log-

Logistic 

3P 

Burr  

Type XII  

3P 

Dagum 

Type I  

3P 

Log-

Logistic 

3P 

Burr  

Type XII 

3P 

Dagum 

Type I  

3P 

Log- 

Logistic 

3P 

L-L -4768.32 -4769.32 -4764.12 -5992.97 -5994.64 -5997.70 -5145.85 -5147.52 -5146.99 

AIC 9542.65 9544.64 9534.25 11991.94 11995.28 12001.40 10297.71 10301.04 10299.99 

BIC 9557.76 9559.75 9549.36 12007.05 12010.39 12016.52 10312.82 10316.15 10315.10 

MSE 1.94e-06 2.91e-06 4.25e-06 1.64e-07 1.21e-07 1.41e-07 2.17×e−6 2.43×e−6 2.41×e−6 

MAE 0.0009 0.0011 0.0012 0.0003 0.0003 0.0003 0.0009 0.0010 0.0011 

RMSE 0.0014 0.0017 0.0021 0.0004 0.0004 0.0004 0.0015 0.0016 0.0016 

MedAE 0.00054 0.00053 0.00051 0.0003 0.0002 0.0002 0.0006 0.0008 0.0008 

MAPE (%) 64.600 73.270 80.660 108.462 128.254 140.802 37.406 42.177 43.476 

R² 0.9755 0.9632 0.9463 0.9823 0.9869 0.9848 0.9340 0.9260 0.9260 

KS Test 

(p-value) 

0.0457 

(0.2590) 

0.0549 

(0.1049) 

0.0608 

(0.0535) 

0.0477 

(0.2166) 

0.0438 

(0.3058) 

0.0479 

(0.2109) 

0.0844 

(0.0019) 

0.0825 

(0.0026) 

0.0804 

(0.0036) 

CVM Test 

(p-value) 

0.3067 

(0.1295) 

0.3761 

(0.0836) 

0.4231 

(0.0628) 

0.2763 

(0.1578) 

0.2489 

(0.1898) 

0.2643 

(0.1711) 

0.7303 

(0.0107) 

0.6953 

(0.0130) 

0.6585 

(0.0160) 

AD Test 

(p-value) 

2.4952 

(0.0498) 

2.3502 

(0.0595) 

2.2969 

(0.0635) 

2.0885 

(0.0822) 

1.8695 

(0.1085) 

1.7259 

(0.1307) 

4.9419 

(0.0030) 

4.3918 

(0.0056) 

4.1107 

(0.0077) 
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Table 14 

Performance Metrics and Goodness-of-Fit Tests for O3, PM10 and PM2.5 using 10-Fold Cross-Validation 

Average 

Metrics 

O3 PM10 PM2.5 

Burr 

Type XII 

3P 

Dagum 

Type I 3P 

Log-

Logistic 

3P 

Burr 

Type XII 

3P 

Dagum 

Type I 3P 

Log-

Logistic 

3P 

Burr Type 

XII 3P 

Dagum 

Type I 3P 

Log-

Logistic 

3P 

MSE 8.23e-05 8.38e-05 7.98e-05 1.47e-06 1.45e-06 1.56e-06 6.40×e−6 6.51×e−6 6.45×e−6 

MAE 0.0051 0.0052 0.0051 0.0009 0.0009 0.0009 0.0017 0.0017 0.0017 

RMSE 0.0068 0.0070 0.0069 0.0012 0.0012 0.0012 0.0024 0.0024 0.0024 

MAPE (%) 56.4207 55.2689 54.0315 8618 9864 1064 6.38×1012 7.53×1012 7.72×1012 

R² 0.6272 0.5957 0.5953 0.8117 0.8058 0.7870 0.7788 0.7661 0.7681 

MedAE 0.0037 0.0037 0.0036 0.0007 0.0007 0.0007 0.0012 0.0012 0.0012 

L-L -6156.37 -6155.80 -6149.89 -7731.36 -7732.77 -7737.26 -6679.44 -6680.42 -6679.81 

AIC 12318.75 12317.6 12305.78 15468.71 15471.54 15480.52 13364.88 13366.84 13365.62 

BIC 12334.62 12333.47 12321.65 15484.58 15487.41 15496.38 13380.75 13382.71 13381.49 

KS 0.2369 0.2372 0.2345 0.1407 0.1401 0.1398 0.1529 0.1484 0.1481 

CVM 4.7967 4.8325 4.7802 1.1815 1.1744 1.1777 1.1390 1.1018 1.1017 

AD 25.7533 25.9662 25.6969 7.0657 6.9741 7.0152 6.7643 6.5188 6.5155 

 

Table 13 evaluates the performance of Burr Type XII 3P, 

Dagum Type I 3P and Log-Logistic 3P distributions for O₃, 

PM₁₀ and PM₂.₅: 

 O₃: The Log-Logistic 3P model achieves the highest 

Log-Likelihood (LL: -4764.12) and the lowest AIC 

(9534.25) and BIC (9549.36), indicating a good fit. 

However, the Burr type XII 3P model excels in 

prediction accuracy with the lowest MSE (1.94e-06), 

MAE (0.0009), RMSE (0.0014) and the highest R² 

(0.9755), making it the most suitable distribution for 

O₃. 

 PM₁₀: The Dagum type I 3P model offers the best fit, 

with the lowest AIC (11995.28) and BIC (12010.39) 

and the highest R² (0.9869). It also shows the lowest 

MSE (1.21e-07), MAE (0.0003) and RMSE (0.0004), 

confirming its optimal choice for PM₁₀. 

 PM₂.₅: The Burr type XII 3P distribution provides the 

best overall performance, with the lowest AIC 

(10297.71), BIC (10312.82), MSE (2.17e−6), MAE 

(0.0009) and RMSE (0.0015). Despite similar R² values 

for Dagum type I 3P and Log-Logistic 3P (0.9260), 

Burr type XII 3P outperforms in goodness-of-fit tests. 

Overall, Burr type XII 3P is preferred for O₃ and PM₂.₅; 

while Dagum type I 3P is optimal for PM₁₀. 

 

Table 14 presents the 10-fold cross-validation results for O₃, 

PM₁₀ and PM₂.₅, revealing distinct model performance 

patterns: 

 O₃: The Log-Logistic 3P distribution emerges as the best 

model for predictive accuracy, with the lowest MSE 

(7.98e-05), MAE (0.0051) and RMSE (0.0069). 

Although Log-Likelihood (-6149.89) is higher and AIC 

(12305.78) and BIC (12321.65) values are lower than 

those of the Burr type XII 3P distribution, its superior 

predictive accuracy makes it the preferred choice. 

 PM₁₀: The Burr type XII 3P distribution is most effective, 

achieving the lowest MSE (1.47e-06), MAE (0.0009) and 

RMSE (0.0012), along with the highest R² (0.8117). It 

also excels in Log-Likelihood (-7731.36), AIC 

(15468.71) and BIC (15484.58) metrics, supported by 

strong goodness-of-fit results in KS (0.1407) and CVM 

(1.1815) tests. 

 PM₂.₅: The Burr type XII 3P distribution is again the 

most suitable model, with the lowest MSE (6.40e-6), 

MAE (0.0017) and RMSE (0.0024), alongside the 

highest R² (0.7788). It performs well in Log-Likelihood 

(-6679.44), AIC (13364.88) and BIC (13380.75), further 

confirmed by other statistical measures. 

 

Overall, while the Log-Logistic 3P distribution is optimal for 

O₃ due to its predictive accuracy, the Burr type XII 3P 

distribution consistently outperforms other models for PM₁₀ 

and PM₂.₅ across multiple metrics. 

 

Conclusion 
This research evaluated the suitability of three flexible 

probability distributions-Burr type XII 3P, Dagum type I 3P 

and Log-Logistic 3P-for modeling the concentrations of 

secondary pollutants O₃, PM₁₀ and PM₂.₅ in Visakhapatnam, 

a rapidly industrializing city in India. Using robust statistical 

techniques, the analysis highlights that the Burr type XII 3P 

distribution is the most effective in capturing the heavy-

tailed distribution of O₃ concentrations.  

 

The Dagum type I 3P proves optimal for PM₁₀ 

concentrations due to its ability to model moderate 

variability and skewness, while both Burr type XII 3P and 

Log-Logistic 3P distributions provided reliable models for 

PM₂.₅. These models offer a valuable basis for improving air 

quality assessments and targeted pollution control in similar 

mid-sized cities. Future studies could apply these models to 

other urban areas and to explore seasonal variations to 

further enhance air quality predictions. This work supports 
environmental management efforts to address the public 

health challenges posed by pollution in growing urban 

regions. 
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