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Abstract

This study investigates the suitability of three
parameters continuous probability distributions-Burr
Type XI11 3P, Dagum Type | 3P and Log-Logistic 3P-in
modeling secondary air pollutants: ozone (0Os),
particulate  matters  (PMiw and  PM:s) in
Visakhapatnam, an urban region having rapid
industrialization. By employing rigorous statistical
techniques including maximum likelihood estimation
(MLE) and bootstrapping, we estimate distribution
parameters and validate model fit through diagnostic
plots-skewness vs. kurtosis, P-P and Q-Q plots as well
as goodness-of-fit test-statistics, such as Kolmogorov-
Smirnov(KS), Anderson-Darling(AD) and Cramér von
Mises(CvM) tests. Additional, performance metrics
including Akaike information criterion(AIC), Bayesian
information criterion(BIC), evaluation metrics like
mean absolute error(MAE), mean absolute percentage
error(MAPE), mean squared error(MSE), root mean
squared  error(RMSE) and  coefficient  of
determination(R2) and cross-validation, were also
applied to ensure model robustness.

Results indicate that the Burr Type XII 3P distribution
most effectively models the high variability and skewed
nature of Os concentrations, while the Dagum Type I
3P distribution provides the best fit for PM.o» and both
Burr Type XI1 3P and Log-Logistic 3P distributions are
suitable for PM:.s. These findings offer new insights
into the behavior of secondary pollutants, supporting
the development of robust air quality monitoring
frameworks. R software facilitated all numerical
analyses and visualizations of data suited to
environmental data modeling.

Keywords: Urbanization, Air Pollution, Statistical
Distributions, Secondary Air Pollutants, Model Selection.

Introduction

Air pollution, often called the "silent killer," is a major global
health crisis, contributing to an estimated seven million
preventable deaths annually, as reported by the World Health
Organization (WHO). Among the most harmful pollutants
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are PMio (particulate matter<10microns), PM:.s (particulate
matter<2.5microns) and Os (ozone) which penetrate deeply
into the respiratory system and increasing the risk of severe
health issues, such as cardiovascular disease, lung cancer
and respiratory infections. While extensive research has
focused on extreme pollution levels in megacities, a growing
body of evidence suggests that mid-sized, rapidly
industrializing cities also face substantial air quality
challenges.

Visakhapatnam, a coastal city in India experiencing rapid
industrialization, exemplifies this trend. Industrial activities
such as port operations, steel production and construction
contribute to the release of pollutants, transforming primary
emissions into secondary pollutants like Os, PMio and PMa.s
through complex chemical reactions. While air pollution
levels in this city are not as extreme as those of major
metropolitan areas, they frequently exceed national ambient
air quality standards and pose significant public health risks.
Given its status as one of India's most polluted mid-sized
cities, understanding pollutant trends and variability in
Visakhapatnam are essential in developing effective air
quality controls and public health strategies.

Existing studies on air pollution modeling have applied
various statistical ~distributions to analyze pollutant
concentrations in different urban contexts. For instance,
Gavriil et al'® found the Pearson type VI distribution to best
fit PMjo and PM,s data in Athens, with inverse Gaussian,
lognormal and Pearson type V also performing well.

Noor et al'® found the gamma distribution best for PM;¢ in
Nilai and log-normal best for Shah Alam, with both cities
staying within MAAQG limits despite occasional
exceedances in 2007. Benjamin et al> demonstrated the
superiority of the Dagum distribution over the Generalized
Extreme Value (GEV) distribution for modeling
tropospheric ozone (Os) levels. Ahmat et al® found the GEV
distribution most accurate for predicting PMjo
concentrations in Malaysia. Thupeng'® used the Burr-XII
distribution to model daily maximum nitrogen dioxide levels
in Gaborone, finding it superior to the Dagum and Log-
Logistic distributions.

El-Shanshoury® identified the Frechet distribution with the
Hosking and Wallis plotting position as the best fit for TSP
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and PMjo concentrations in Ain Sokhna. Jaffar et al'l
reviewed gamma, lognormal and Weibull distributions for
modeling air pollution data, highlighting the need for
accurate models to predict high pollution events and improve
air quality management. Febriantikasari et al® applied the
Dagum distribution to simulate PMjo concentrations in
Pekanbaru, Indonesia, concluding that the L-Moments
method was the most effective for parameter estimation.

Bhandari* used a two-parameter lognormal distribution to fit
PM, data in Kathmandu, Nepal and found the method of
moments provided the best fit for the observed
concentrations. Warsono et al*' determined that generalized
distributions, particularly the Generalized Log-Logistic,
provided the best fit for PM>s concentrations during the
COVID-19 pandemic in Jakarta. Omar'® found that the
method of moments was the most effective parameter
estimator for the lognormal distribution in predicting PMio
concentrations in suburban areas, especially in Jerantut and
Sungai Petani. In contrast, the uniformly minimum variance
unbiased estimator demonstrated strong accuracy in Muar
and Kuantan. Jaffar et al!! identified Nakagami and Gamma
distributions as the best fits for ground-level ozone in
Malaysian cities, with Nakagami suitable for Kuala
Terengganu and Alor Setar and Gamma for Kota Bharu.

Choopradit et al® determined that inverse Gaussian and
Pearson type V distributions were most suitable for PMa s
concentrations in Bangkok, highlighting that the 98th
percentile of PMas levels exceeded Thailand’s 24-hour
threshold, indicating significant health risks. Kumar et al'?
examined seasonal trends in PMzs and PMjy in
Visakhapatnam from January 2020 to December 2022,
finding the highest levels in December 2020, with
concentrations exceeding NAAQS limits in winter and
improved air quality in the summer and monsoon seasons'.

This study evaluates the fit of three flexible three-parameter
distributions-Burr type XII 3P, Dagum type | 3P and Log-
Logistic 3P-for modeling daily mean levels of Os, PMio and
PM:.s in Visakhapatnam. Chosen for their ability to capture
the heavy-tailed and skewed characteristics of air pollutants,
these distributions are tested using data from January 2018
to December 2022 provided by the Andhra Pradesh Pollution
Control Board. The model performance is assessed through
various methods including skewness-kurtosis plots, PDFs,
ECDFs, P-P and Q-Q plots and Maximum Likelihood
Estimation (MLE) for parameter estimation.

Bootstrapping generates confidence intervals and model
validation is conducted via residual plots and goodness-of-
fit tests (K-S, A-D, CvM), alongside AIC and BIC metrics.
Additional assessments including error metrics, kernel
density estimation and cross-validation, further refine the
model comparison. The study aims to identify the most
suitable distribution for air quality modeling, supporting
targeted policy interventions and public health strategies for
mid-sized urban areas.
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Material and Methods

Research Area and Data: This research study analyzes
daily average ambient air quality data collected from January
2018 to December 2022 by the Andhra Pradesh Pollution
Control Board (APPCB) at the Continuous Ambient Air
Quality Monitoring Station (https://pcb.ap.gov.in/) in
Visakhapatnam (GVMC), an industrial city on India’s
eastern coast. The city’s industrial activities including port
operations and steel production, contribute to significant air
pollution, making it an important site for air quality
monitoring. The dataset includes daily measurements of
secondary pollutants-ozone (0Os), PMig and PM:s, along
with primary pollutants including CO, NO, NO2, NOx, NHs,
SO: and volatile organic compounds (VOCs) such as xylene,
toluene and benzene. Daily data from the five-year period
were used to assess pollutants trends. Missing values were
imputed via linear interpolation and outliers (values beyond
three standard deviations) were handled through
Winsorization. This dataset supports advanced statistical
modeling (Burr type XII 3P, Log-Logistic 3P and Dagum
type I 3P) to analyze secondary pollutant (Os, PMio and
PM..s) variability in the industrial urban setting®.

Methods: The analysis employed three probability density
functions (PDFs)-Burr type XII 3P, Dagum type | 3P and
Log-Logistic 3P distributions to model air pollutant
concentrations. To evaluate the suitability of these models,
several methods were used. Goodness-of-fit tests (GoF)
including the Kolmogorov-Smirnov, Anderson-Darling and
Cramér-von Mises tests, were conducted using R to assess
how well the PDFs fit the data. Additionally, model
performance was gauged using criteria such as Log-
Likelihood (LL), Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC), Hannan-Quinn
Information Criterion (HAIC), Consistent AIC (CAIC) and
Adjusted BIC (ABIC). Model selection metrics, including
Mean Absolute Error (MAE), Mean Squared Error (MSE),
Root Mean Squared Error (RMSE), R-Squared and Cross-
Validation, were further utilized to compare the models. In
addition, Kernel Density Estimation, residual analysis and
diagnostic plots including PDF, ECDF, Q-Q and P-P plots
were employed to provide a comprehensive assessment of
the goodness of fit, ensuring a robust evaluation of the
statistical models for pollutant concentration distribution.

Statistical Distributions in Air Pollution: Statistical
probability distributions are vital for modeling air pollution
data, offering a robust framework to capture the inherent
variability and trends in environmental quality. This study
focuses on modeling the concentrations of ozone (Os),
particulate matter (PMio and PM2.s) using continuous three-
parameter (3P) distributions: Burr type XII 3P, Dagum type
| 3P and Log-Logistic 3P. These distributions were chosen
for their adaptability in capturing skewed, heavy-tailed data,
which is typical of air pollutant distributions. Table 1
presents the Cumulative Distribution Function (CDF, F(x))
and Probability Density Function (PDF, f(x)) for these
distributionst8.
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Table 1
The PDF and CDF of Three Parameter Distributions
Distribution Synopsis PDF CDF Parameters
Models data with various £ o 0. ) =
Burr Type XII | shapes and is useful for (a.'m.éx_'l)o?-l F(xa, “:( );\) o \é\(/gﬁ;%g >w/1'>a0?5cale)
3P skewed or heavy-tailed NI 1-—114 (= ; )
dataL. [1+(22)] [ ( ® ) ] and A > 0 (Location).
Versatile in modeling f(x; 8,7,9) = F(x; 8,7,0) = Where x > 0,6 >
Dagum Type | | income and wealth data, &1-x5-1 T 81T 0 (Shape)
3P accounting for skewness N [1 + (i) ] T > 0(Shape) and 9 > 0
and kurtosis. o[+ ] 9 (Scale)
. . ) _ Wherex >y, n>
Log-Logistic Sungble _ for modeling f(x;m, B,Y)_= F(x,n,F,Y) = 0(Shape),
survival times and skewed 1B (x—y)""?
3p data. [B+(x—y)n]n+1 1+(Ly)n B > %EEC&'G)., a?d
*” y > ocation).

Methods of Parameter Estimation: Parameter estimation
was conducted using the maximum likelihood estimation
(MLE) method, selected for its consistency and efficiency in
environmental data modeling. MLE maximizes the
likelihood function, allowing us to identify the parameter
values that best align the chosen distribution with observed
data. For each model, the likelihood function was
constructed based on pollutant data and numerical
optimization techniques were used to derive the parameters.

To quantify variability and uncertainty, we employed the
bootstrap resampling technique with 1,000 resamples. For
each resample, MLE was recalculated to generate 95%
confidence intervals for the parameters, offering insight into
model stability. Narrower intervals indicate a more stable
parameter estimate, enhancing the robustness of the fitted
models. This approach also provided bias and standard error
values, further validating model reliability.

Method of Kernel Density Estimation (KDE): KDE is a
non-parametric technique used to estimate the PDF of air
pollutant concentrations, (Os, PMio, PM..s) without
assuming a specific distribution. It provides a smooth,
continuous estimate of pollutant distributions from observed
data, enabling detailed visualization of concentration
patterns over time. The bandwidth, or smoothing parameter,
is crucial in balancing data pattern capture and noise
reduction, preventing over fitting or excessive smoothing.
The density estimates at a point x is defined as:

(5

where K is the kernel function, h is the bandwidth, X; is the
data points and n is the sample size. Unlike parametric
models such as Burr type X1l 3P, Dagum type | 3P and Log-
Logistic 3P, which rely on predefined distributions, KDE
adapts to the actual data, making it useful for detecting
outliers and assessing model fit.

n
n=1

fe) =—

In this study, KDE was employed to analyze the distribution
of pollutant concentrations and to complement the
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evaluation of parametric models, offering an additional layer
of insight into the behavior of air pollutants.

Methods of Model Selection Criteria: After estimating
parameters, each model was evaluated for its fit and
predictive accuracy using a comprehensive set of selection
criteria. These criteria balance model fit with complexity,
ensuring that selected models to capture pollutant
concentration distributions effectively without overfitting.

Goodness-of-Fit-Tests: To rigorously evaluate the fit of
statistical models to observed air pollution data, various
goodness-of-fit tests were applied’. These tests compare the
observed data against the expected values under the fitted
model, providing a measure of how well the model captures
the underlying distribution of the data.

Kolmogorov-Smirnov (K-S) Test: KS test is sensitive to
discrepancies in both the location and shape of the
distributions, making it a versatile tool for assessing model
adequacy across a broad range of distribution types. The K-
S test D is defined as:

D=sup, | F,(X) —F(X) |,—0 <x < o

where F,(x) is the ECDF and F(x) is the CDF of the models.
A lower KS statistic and higher p-value indicate a close
alignment between observed data and model fit.

Anderson-Darling (A-D) Test: A-D test extends the K-S
test by placing more weight on the tails of the distribution,
making it particularly useful for detecting discrepancies in
tail behaviour. The A-D test A? is given by:

A? = —n — =37, [2i — D(InF(x) + In(1 = F(xpy1-0))]
where n is the sample size, X; are the ordered data points and
F(x;) is the CDF of the fitted model. A larger A? value
indicates a worse fit, especially in the tails. This test provides
a comprehensive assessment of model fit by focusing on
deviations in both central and tail areas.
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Cramer-von Mises Test: CvM test is the measuring the
squared differences between the empirical and theoretical
CDFs across the entire data range. Unlike the K-S test,
which focuses on deviations at specific points, it provides a
global fit assessment. The CvM test W2is calculated as:

W2 = [ (Fy(x) — F(x)) dF(x)

where F, (x)is the empirical CDF and F (x) is the theoretical
CDF. A higher W2value indicates a greater deviation from
the model. Significance is assessed by comparing the
W?2value to critical values from CvM tables or simulations.

Methods of Graphical Validation: Graphical validation
methods provide visual tools to assess the fit of statistical
models to data, offering intuitive insights into model
performance and potential discrepancies.

Quantile-Quantile (Q-Q) Plots: Q-Q plot is a widely used
graphical tool for evaluating how closely a dataset follows a
specified distribution. It compares the quantiles of the
observed data with those of the fitted distribution. In this
plot, observed data values are plotted against the theoretical
quantiles derived from the cumulative distribution function
(CDF) of the fitted model. If the data align with the assumed
distribution, the points will form a straight line, indicating a
good fit. The process of constructing a Q-Q plot using n data
points is defined as {x;, F'(pi)} where i=1, 2,...,n. Q-Q plots
compare the quantiles of the observed data against the
quantiles of the fitted distribution. Deviations from the 45-
degree line in a Q-Q plot reveal discrepancies between the
observed and expected distributions, signaling areas where
the model may not fit the data accurately.

Probability-Probability (P-P) Plots: P-P plot is a graphical
tool used to evaluate the goodness of fit between an
empirical dataset and a specified theoretical distribution. It
compares the cumulative distribution function (CDF) of the
observed data with that of the fitted model by plotting the
empirical probabilities against the corresponding theoretical
probabilities. If the data align with the assumed distribution,
the points will follow the 45-degree reference line,
indicating a good fit. P-P plots are especially useful for
identifying deviations from the expected distribution,
particularly in the tails.

Residual Plots: Residual plots are graphical tools used to
assess the goodness of fit of a statistical model by analysing
the differences between observed and predicted values
(residuals). Typically, residuals are plotted against predicted
values or another variable. A well-fitting model shows
residuals randomly scattered around zero, indicating no
systematic pattern.

Residual plots help to detect issues like model
misspecification, heteroscedasticity, or non-linearity. If
patterns appear in the plot, it suggests areas for model
improvement. These plots complement quantitative
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goodness-of-fit tests by providing visual insights into model
adequacy.

Methods of Model Performance Criteria: Model
performance criteria are quantitative measures used to assess
the accuracy and efficiency of statistical models in
predicting pollution levels’. These metrics help to compare
different models, ensuring the selection of one that balances
complexity with accurate pollutant predictions.

By evaluating these metrics, we can identify which model
best captures the variability in pollutants like Os, PMio and
PMz.s. Table 2 provides the formulas and descriptions for all
performance indicators.

Methods of Model Evaluation Metrics: Model evaluation
metrics are critical for assessing the predictive performance
and generalizability of statistical models, especially for
pollutant concentrations like Os, PMio and PMa.s. Accuracy
metrics closer to one indicate better performance while
evaluation metrics nearer to zero suggest a better fit. Table 3
lists the formulas and descriptions for all performance
indicators.

Results and Discussion

Statistical Characteristics of Os, PM1o and PM.s: Table 4
presents the descriptive statistics for ozone (Os), PMio and
PM..s concentrations, based on 1,627 observations from
January 1, 2018, to December 31, 2022, highlighting the
distribution and variability of these pollutants over time?.

Table 4 shows key statistics for ozone (Os), PMio and PMa.s
concentrations from 2018-2022. Ozone has a low mean
concentration (27.75ug/m3), well below the NAAQS
standard (180pg/ms3), but shows significant variability with
occasional high levels (skewness: 2.02, kurtosis: 4.96). PMio
exceeds the NAAQS daily limit (70ug/m3) with a mean of
109.75ug/m3 and moderate variability (skewness: 1.14,
kurtosis: 1.73). PMz.s also exceeds the NAAQS standard
(35ug/m3) with a mean of 45.26ug/m3, showing occasional
spikes (skewness: 1.47, kurtosis: 2.92). The coefficient of
variation indicates that ozone has the highest relative
variability. These findings emphasize the need for stronger
air quality controls, especially for ozone and PM.o, where
safety threshold violations are more likely.

Figures 1 and 2 illustrates daily mean concentrations of
ozone (03), PMio and PMa.s in Visakhapatnam (2018-2022)
revealing significant variability and seasonal patterns,
essential for selecting appropriate statistical models. Os
shows peaks around 2019-2020, likely driven by
photochemical reactions while PMio exhibits spikes due to
localized pollution events like dust storms. PMz.s shows
periodic spikes from vehicular and industrial emissions?®.

These patterns underscore the importance of applying

adaptable statistical models to capture the complex
characteristics of pollutants in urban regions.
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Table 2
Model Information Criteria and their Formulas, Descriptions
Criterion Description Formula Interpretation
ﬁggv_L\il,(eilllhg;d mf(l)lg;[lo;lxplr: i?ssutr}?esz Higher Log-Likelihood indicates a
LL observed data, representing the InL(6) greater p robajtnhty Of the models
probability of the data given the parameters being consistent with the
model's parameters. observed data.
Akaike Information Criterion Lower AIC indicate a better model, as
AlC balances model fit and complexity by 2.k — 2.In(L) they balance fit and complexity, favoring
penalizing the number of parameters, ' ' simpler models with comparable
thus helping to prevent overfitting explanatory power.
Baye@an Information  Criterion Lower BIC indicates a more
applies  a stronger penalty for arsimonious model, particularly in
BIC complexity than AIC, making it more k.In(n) — 2.1In(L) p o P y
suitable for larger datasets while large datasets, helping to prevent over
. arg fitting.
promoting parsimony and good fit.
bHaﬁgﬁig;QXign ;Egogegmzpﬁlr;izog Lower HQIC reflects a balance fit and
HAIC milder penalty for complexity, 2.k.In(In(n)) — 2.In(L) comp 1ex1.ty, with a moder.ate.penalty,
making it suitable for moderately making it useful for considering both
large samples. aspects.
Consistent ~ Akaike  Information
Criterion modifies AIC by applying a Lower CAIC indicate a model that
stronger  penalty for  model _ balances fit and complexity while
CAIC complexity, offering a more (k+1).In(n) — 2.In(L) accounting for sample size, making it
consistent criterion for model robust across varying sample sizes.
selection.
Adjusted  Bayesian  Information
Criterion modifies BIC to better Lower ABIC indicate a more optimal
ABIC account for small sample sizes, k2 model for smaller sample sizes,

improving model selection
consistency by adjusting the penalty
for model complexity

k.In(n) +

— 2.In(L)

balancing fit and complexity with an
adjusted penalty

Notations: n: Sample size, k: Number of estimated parameters, L: Likelihood function, In(L): Log-Likelihood and 8: model

parameters.
Table 3
Model Error Metrics and Their Formula, Descriptions
Metric Description Formula Interpretation
Mean Bias Error quantifies the average . .
. I . Measures average bias, with
bias in predictions, revealing whether 1on e e
MBE the model tends fo overestimate or - L, (P —0y) values closer to 0 indicating less
. bias in the model's predictions.
underestimate values.
Mean Absolute Error quantifies the
MAE average magnitude of errors between 1 SO ICP = 0))] Lower MAE indicates better
predicted and actual values, without n S1=11 ! model performance.
considering the direction of the errors.
Mean Squared Error calculates the
MSE average of the squared differences 1yn (P, — 0,)? Lower MSE indicates better
between predicted and actual values, n <=1 ! accuracy.
giving greater weight to larger errors.
Median Absolute Error is the median of
MAAE absolute errors, offering robustness to median(| (P, — 0,)]) Lower MdAE indicates that the

outliers and making it less sensitive to
extreme values compared to MAE.

model consistently performs.
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Mean Absolute Percentage Error is the
average of the absolute percentage

Lower MAPE indicates better
relative accuracy, with

. 1 P:—0:
MAPE errors between predicted and actual -y, |(‘—‘)| X 100% .
. n 0; predictions closer to the actual
values, providing a clear measure of values
prediction error in percentage terms. )
Root Mean Squared Error is the square Lower values indicate better
RMSE root of MSE, providing error magnitude lyn (P, — 0;)2
. . n <=1 ! accuracy.
in the same units as the data.
Normalized RMSE is RMSE RMSE Lower values indicate better
NRMSE normalized by the mean of the observed mean(0p) accuracy relative to the data
data. ' range or mean.
Coefficient of Variation of RMSE is o
RMSE normalized by the mean of RMSE Lower values indicate better
CV-RMSE X 100% model performance relative to
observed values, expressed as a mean(0;)
mean of the observed data.
percentage.
Coefficient of Determination measures
R2 the proportion of the variance in the Y ,(0;-0)2-FL (P;—0;)?2 Values closer to 1 indicate a
dependent variable that is predictable ¥ ,(0i—0)? better fit.
from the independent variables.
A method to evaluate model predictive , o
S . The model’s generalization
performance and generalizability by | The average performance metrics e
e . . . . capability is assessed to ensure
Cross- partitioning the dataset into k subsets. | across all iterations provide a robust it isn't over fitted to the dataset
Validation | The model is trained on k—1 subsets and | measure of the model's ability to Lower variance in erforrnancé
(K-Fold) tested on the remaining subset. This | generalize to unseen data, helping P

process repeats k times, ensuring each
subset serves as the test set once?.

mitigate overfitting.

metrics across folds indicates
greater stability.

Notes: P;: Predicted value, 0;: Observed value, n: Number of observations, P: Mean of predicted values, 0: Mean of observed

values.

Table 4
Descriptive Statistics Summary for Os, PM1o and PM.s Concentrations
o Air Pollutant
Statistic Os PM1o PMas

Sample Size (n) 1,627 1627 1627
Minimum (ug/m3) 1.9 12 4
Maximum (ug/m3) 160.2 376 207
1st Quartile 12.2 74 26
Median (ug/m?3) 20.7 101 37
Mean (pg/m?3) 27.75 109.75 45.26
3rd Quartile 34 133 58
Range (ug/m3) 158.3 364 203
Standard Error of Mean 0.59 1.31 0.7
Lower 95% CI for Mean 26.6 107.19 43.89
Upper 95% CI for Mean 28.9 112.31 46.63
Variance 556.07 2775.9 790.29
Covariance 0.85 0.48 0.62
Standard Deviation (ug/m3) 23.58 52.69 28.11
Skewness 2.02 1.14 1.47
Kurtosis 4.96 1.73 2.92
Trimmed Mean (10%) (ug/m?) 23.41 104.02 41.47
IQR 21.8 59 32
Median Absolute Deviation (g/m3) 14.53 43 22.24
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Figure 1: Individual Time Series Plot of Daily Mean Concentrations of O3, PMio and PM_.s.
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Figure 2: Combined Time Series Plot of Daily Mean Concentrations of O3, PMio and PM_.s.
Figures 1 and 2: Time Series Plot of Daily Mean Concentrations of Ozone (Os), Particulate Matter (PMio and PM..s)

in Visakhapatnam (2018-2022).

Table 5

Descriptive Parameters of Empirical Distribution for Non-Censored Data: Oz, PMio and PM_ s Concentrations.

Pollutant | Min | Max | Median | Mean | Est.Sd | Est.Skewness | Est.Kurtosis
O3 19 | 160.2 20.7 27.75 | 23.58 2.03 7.99
PMjio 12 376 101 109.75 | 52.69 1.14 4.74
PM3 s 4 207 37 4526 | 28.11 1.47 5.94

The Burr type X1l 3P, Dagum type | 3P and Log-Logistic 3P
distributions were chosen to capture these behaviors. Heavy
tails in O3, PM2.5s concentrations align with Burr Type XII 3P
and Log-Logistic 3P models, while extreme values in PMio
fit the Dagum type | 3P distribution. These insights explain
the models' comparative performance based on metrics like

https://doi.org/10.25303/294rjce039056

AIC, BIC and goodness-of-fit-tests, underscoring the need
for advanced distributions to model pollutant variability.

Table 5 presents descriptive parameters for Os, PMio and

PM:.s. Os displays significant right estimated skewness
(2.03) and high kurtosis (7.99), indicating a heavy-tailed
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distribution with potential outliers. PMio shows moderate
estimated skewness (1.14) and kurtosis (4.74), suggesting a
more symmetrical distribution compared to Os. PM..s falls
between the two, with an estimated skewness of 1.47 and
kurtosis of 5.94, indicating a right-skewed distribution but
less extreme than Os. These variations suggest that Os may
require flexible distributions like Burr type XII 3P or Log-
logistic 3P, while PMio could be better modeled by the
Dagum type I 3P. PM..s may benefit from a combination of
these approaches.

Figure 3 displays Cullen and Frey graphs for Os, PMio and
PM:.s, offering insights for selecting appropriate
distributions to model these air pollutants. The graph for O
shows high skewness and kurtosis, suggesting that Burr type
XI1 3P and Log-logistic 3P distributions are suitable due to
their capacity to handle heavy tails and significant
asymmetry. PMio graph indicates moderate skewness and
kurtosis, making Dagum type | 3P distribution a good fit for
this pollutant. In contrast, PM..s graph mirrors Os, with high
skewness and kurtosis, indicating that Burr type XI1I 3P and
Log-logistic 3P distributions are also appropriate for PMa.s.

Cullen and Frey graph

Cullen and Frey graph

Res. J. Chem. Environ.

Overall, while the Dagum type | 3P is more suitable for
PM.o, Burr type X1 3P and Log-logistic 3P distributions are
better suited for Os and PM..s, reflecting their distinct
statistical properties.

Parameter Estimates and Confidence Intervals for Each
Model Distribution: The Maximum Likelihood Estimation
(MLE) method was employed for parameter estimation of
each model, with computations performed using R software.
Table 6 illustrated the estimated parameters and standard
errors for each advanced statistical distribution. The Burr
type XII 3P indicates heavy tails and substantial variability
for ozone, significant spread for PMio and moderate
dispersion for PM..s. The Log-Logistic 3P suggests lighter
tails for ozone, reduced variability for PMie and somewhat
heavier tails for PMz:.s. The Dagum type | 3P exhibits
significant right skewness and heavy tails for ozone, high
variability for PMio and moderate spread with substantial
skewness for PM:.s. These findings highlight the importance
of selecting appropriate distributions for accurate air quality
modeling and effective management.
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Figure 3: Cullen and Frey Graphs for Assessing Skewness vs. Kurtosis in Oz, PMig and PM; s Data
for Distribution Fitting.

Table 6
Estimated Parameter Values of each Distribution for Oz, PMip and PM; s using MLE

Distributions Air Parameter Std. Parameter Std. Parameter Std.
Pollutants 1 Error 1 2 Error 2 3 Error 3
Burr Type XIlI O3 2.1627 0.0895 0.4190 0.0316 14.7275 0.5073
3P PMyo 3.1679 0.1177 0.1916 0.0176 73.4368 1.2175
PM2s 2.6883 0.1212 0.3020 0.0275 27.2696 0.7402
Log-Logistic O3 0.4993 0.0138 2.9259 0.0262 1.6352 0.2329
3P PMyo 0.2764 0.1103 4.5909 0.0325 0.9004 2.8336
PM2s 0.3673 0.0142 3.5837 0.0339 1.7618 0.9798
Dagum Type | O3 2.1326 0.0894 18.6112 1.5456 1.1532 0.1304
3P PMso 4.2431 0.1711 114.4079 3.5039 0.6944 0.0558
PM2s 2.7935 0.1088 36.1097 2.0832 1.0957 0.1121
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Table 7 presents the 95% confidence intervals (Cls) for each 2.8745-2.9772) but broader intervals for PMio and PMz.s,
parameter across the Burr type XII 3P, Log-Logistic 3P and especially for the threshold parameter (PMio: -4.6535 to
Dagum type I 3P distributions in modeling for Os, PMio and 6.4542; PM2.s: -0.1585 to 3.6822).

PM:z.s. The Cls for Os parameters in the Burr type XII 3P

distribution are relatively narrow, indicating moderate The Dagum type I 3P distribution exhibits moderate
variability (Shapel: 1.9873-2.3381, Shape2: 0.3571— variability, with the widest Cls for PMio (Shapel.a: 3.9077—
0.4809, Scale: 13.7333-15.7218). In contrast, the intervals 4.5784, Scale: 107.5404-121.2755, Shape2.p: 0.5850-
for PMio parameters are broader, suggesting higher 0.8037) and narrower intervals for PMa.s. Overall, the Burr
uncertainty (Shapel: 2.9371-3.3987, Shape2: 0.1570- type XII 3P distribution provides more precise parameter
0.2261, Scale: 71.0506-75.8230) while PM..s Cls reflect estimates, while the Log-Logistic 3P shows significant
intermediate variability. The Log-Logistic 3P distribution variability in the threshold parameter and the Dagum type [
shows tighter CIs for Os (Shape: 0.4723-0.5263, Scale: 3P demonstrates moderate uncertainty, particularly for PMio.

Table 7
Confidence Intervals for each Distributions and Pollutants (O3, PMio and PM.s) using MLE
L. ] O3 O3 PMyo PMyo PMa 5 PM:ys
Distributions | Parameter |, 5o, 1y | (97.506C1) | (2.5%Cl) | (97.5%Cl) | (2.5%Cl) | (97.5%Cl)
Burr Type Shapel 1.9873 2.3381 2.9371 3.3987 2.4507 2.9259
X1 3p Shape?2 0.3571 0.4809 0.1570 0.2261 0.2480 0.3559
Scale 13.7333 15.7218 71.0506 75.8230 25.8188 28.7204
Log-Logistic Shape 0.4723 0.5263 0.2548 0.2980 0.3394 0.3951
3p Scale 2.8745 2.9772 45272 4.6545 3.5173 3.6501
Threshold 1.1789 2.0916 -4.6535 6.4542 -0.1585 3.6822
Dagum Type Shapel.a 1.9573 2.3078 3.9077 45784 2.503 3.0067
| 3P Scale 15.5819 21.6406 107.5404 121.2755 32.0267 40.1928
Shape2.p 0.8977 1.4088 0.5850 0.8037 0.8760 1.3155
Table 8
Bootstrap Parameter Estimates and Confidence Intervals for Each Pollutant across Model Distributions
Pollutant Distribution Parameter | Original Estimate Bias Std. Error 95% CI
Shapel 2.1627 0.0007 0.075 (2.026, 2.318)
Burr Type XII 3P Shape2 0.419 -0.0014 0.0243 (0.3733, 0.4655)
Scale 14.7275 0.0183 0.4821 (13.73, 15.63)
Shape 0.4994 0.0032 0.0163 (0.4722, 0.5365)
Ozone(0s) | Log-Logistic 3P Scale 2.9255 -0.0051 0.031 (2.851, 2.975)
Threshold 1.6377 0.0707 0.3109 (1.168, 2.409)
Shapel 2.1326 0.0068 0.0793 (1.985, 2.310)
Dagum Type I 3P Shape2 1.1532 0.0007 0.1089 (0.972, 1.409)
Scale 18.6112 0.0767 1.3612 (15.75,21.17)
Shapel 3.1679 0.005 0.1141 (2.950, 3.418)
Burr Type XII 3P Shape2 0.1916 -0.0002 0.0141 (0.1633,0.2176)
Scale 73.4368 0.0087 1.1019 (13.73, 15.63)
Shape 0.2794 -0.0405 0.0266 (0.2004, 0.2857)
PMio Log-Logistic 3P Scale 4.581 0.1499 0.1011 (4.565, 4.878)
Threshold 1.8152 -15.743 10.8815 (-30.91, 1.92)
Shapel 4.2431 0.0046 0.1999 (3.965, 4.608)
Dagum Type I 3P Shape2 0.6944 0.0146 0.3558 (0.6028, 0.7965)
Scale 114.408 -0.2609 4.2554 (108.0, 120.5)
Shapel 2.6883 0.0099 0.1231 (2.476, 2.948)
Burr Type XII 3P Shape2 0.302 0.0005 0.0251 (0.2519, 0.3505)
Scale 29.1537 0.001 1.1009 (25.73, 29.04)
Shape 0.3689 0.0053 0.0137 (0.3443, 0.3900)
PMo..s Log-Logistic 3P Scale 3.5732 -0.0308 0.0652 (3.523, 3.644)
Threshold 1.835 0.0368 0.5021 (0.195, 3.415)
Shapel 2.846 0.0103 0.1328 (2.630, 2.989)
Dagum Type I 3P Shape2 1.138 -0.0326 0.2698 (0.929, 1.326)
Scale 36.0377 -0.6462 2.9655 (32.27,40.02)
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Table 8 presents bootstrap analysis results, identifying the
Burr type XII 3P, Dagum type | 3P and Log-Logistic 3P
distributions as the most reliable models for predicting Os,
PMio and PMa.s concentrations. All models exhibit low bias
and tight confidence intervals, making them strong choices
for air pollutant modeling. The Burr type XIlI 3P model
showed the highest stability for Os, while the Dagum type |
3P and Log-Logistic 3P models followed closely. For PMuo,
the Dagum type | 3P model provided the most reliable
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estimates, though the Log-Logistic 3P showed instability in
its threshold parameter.

For PMz.s5, the Burr type X1l 3P performed well, while the
Log-Logistic 3P exhibited significant variability. Overall,
the Log-Logistic 3P distribution displayed greater
instability, particularly in threshold parameters, indicating a
need for refinement in PMio and PMz.s modeling. These
findings are valuable for selecting effective models in air
quality prediction for Visakhapatnam.
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Figure 4: Empirical and Theoretical Comparisons of O3 Concentrations with Burr Type XI1 3P, Log-Logistic 3P and
Dagum Type I 3P Distributions
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Figures 4, 5 and 6 analyze the empirical and theoretical fits
of O3, PMio and PM2.s concentrations using Burr type XII
3P, Log-Logistic 3P and Dagum type I 3P distributions.
Across all three figures, the probability density functions
(PDFs) indicate that while all models capture the overall data
trend, Burr type XII 3P and Dagum type 1 3P provide
superior accuracy, particularly in the tails. The cumulative
distribution functions (CDFs) further confirm this pattern,
with these two distributions aligning more closely with
empirical data at the extremes. The Q-Q plots show that all
models fit central quantiles well but highlight the superior
performance of Burr type XII 3P and Dagum type I 3P in
capturing extreme values.

Similarly, the P-P plots validate overall fitting accuracy, with
these two distributions consistently outperforming Log-
Logistic 3P for extreme pollutant concentrations. These
findings emphasize the suitability of Burr type XII 3P and
Dagum type I 3P distributions for modeling pollutant
concentrations, particularly in scenarios requiring precise
tail behavior representation, such as environmental risk
assessments and air quality modeling. Table 9 analyzes the
distributions of air pollutants (O3, PMio and PM..s) using
KDE and various distribution models, revealing distinct
distribution characteristics. For s, the actual data
(bandwidth 3.337) shows a mean of 81.05ug/m?, ranging
from -8.11 to 125.63pg/m*®. The Burr type XII 3P model
(bandwidth 3.154) predicts a higher mean of 309.83pug/m?
and a maximum of 627.81ug/m?, indicating strong right
skew.

The Dagum type | 3P model (bandwidth 3.155) offers a
lower predicted mean of 438.98ug/m3. In contrast, the Log-
Logistic 3P model (bandwidth 3.178) significantly
overestimates Os concentrations, predicting a median of
1,210.71pg/m? and a maximum of 2,429.16ug/m?*, making it
unsuitable. For PMio, empirical data (bandwidth 9.031)
reveals a mean of 194pg/m? ranging from -15.09 to
403.09ug/m*>. The Burr type XII 3P model (bandwidth
9.164) predicts a mean of 291.48ug/m?, while the Dagum
type | 3P model (bandwidth 8.867) shows a mean of
358.27ug/m*. Both overestimate central tendencies but are
more realistic than the Log-Logistic 3P model (bandwidth
9.069), which predicts a median of 732.99 pg/m® and a
maximum of 1,485.41 pg/m®. For PM..s, the actual data
(bandwidth 4.898) has a mean of 105.5ug/m?, ranging from
-10.69 to 221.69pg/m3. The Burr type XII 3P model
(bandwidth 4.468) predicts a mean of 237.50pg/m? while the
Dagum type | 3P model (bandwidth 4.425) yields a higher
mean of 337.81ug/m®>. The Log-Logistic 3P model
(bandwidth 4.436) again inflates the median (647.2ug/m?)
and maximum (1,305pg/m?) values, indicating an unsuitable
fit. Overall, these results highlight the variability in pollutant
distributions across models and the importance of selecting
appropriate models for accurate representation.

Figure 7 presents KDE comparisons of observed and
predicted concentrations for Os, PMio and PMa.s.

https://doi.org/10.25303/294rjce039056
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e  O; (left panel): All distributions capture the lower range
(0-50pg/m3) well, with Burr type XIlI 3P and Log-
Logistic 3P performing best near the peak. Dagum type |
3P excels in the tail region above 100 pg/ma.

e PMio (middle panel): Burr type X1l 3P and Dagum type
I 3P closely match peak density, while Log-Logistic 3P
diverges slightly at mid-range concentrations. Dagum
Type | 3P effectively models the right tail above
200pg/m3, indicating its robustness for extremes.

e PM..s (right panel): All distributions align around the
peak (20-50pg/m3), with Burr type XI1 3P, Dagum type
I 3P and Log-Logistic 3P performing better for high
concentrations (>100ug/m3).

Figure 8 illustrates residuals for Os, PMio and PM..s using
the Burr type XII 3P, Log-Logistic 3P and Dagum type | 3P
distributions.

e O; (top row): Burr type XII 3P and Dagum type | 3P
show tightly clustered residuals around zero, indicating
a good fit, while Log-Logistic 3P shows a slightly wider
spread, particularly between indices 500-1000.

e  PMio (middle row): All distributions perform well, but
Burr type XII 3P and Dagum type | 3P exhibit tighter
clustering around zero, with Log-Logistic 3P showing
larger deviations at higher indices.

e  PM..s (bottom row): Burr type X1l 3P and Dagum type
I 3P maintain close clustering around zero, while Log-
Logistic 3P displays more variability and occasional
outliers.

Figure 9 displays diagnostic plots for Burr type XII 3P, Log-

Logistic 3P and Dagum type T 3P models applied to Os

concentrations, including residuals vs. predicted values,

histograms, Q-Q plots and scale-location plots.

e Residuals are symmetrically scattered around zero,
indicating a good model fit.

e  Q-Q plots confirm normality, with slight tail deviations.

e Scale-location plots reveal a minor increase in residual
spread with higher fitted values, suggesting mild
heteroscedasticity.

Figure 10 shows diagnostic plots for PMio concentrations
using Burr type XII 3P, Log-Logistic 3P and Dagum type |
3P models.

e Residuals vs. Predicted Values: Residuals are
randomly distributed around zero, indicating strong
model performance.

e Histograms: Residuals are tightly centered near zero,
suggesting a good fit, though with slight overfitting
potential.

e Q-Q Plots: Normality is largely confirmed, with minor
deviations.

e Scale-Location Plots: Slight increases in residual spread
indicate mild heteroscedasticity.

These results suggest the models fit PMio concentrations
well with minor variability.
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Table 9
Summary of KDE for O3, PM and PM; s
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Figure 8: Residual Analysis for Os, PM1g and PM3 s Using the Burr Type XII 3P, Log-Logistic 3P and
Dagum Type | 3P Distributions

Figure 11 presents diagnostic plots for PM..s concentrations
using Burr type XII 3P, Log-Logistic 3P and Dagum type |
3P models.

Residuals vs. Predicted Values: Residuals are
randomly distributed around zero, showing effective
model performance.

Histograms: Residuals are centered near zero, indicating
a good fit with minor precision concerns.

Q-Q Plots: Residuals align with normality.
Scale-Location Plots: Slight residual spread increase
suggests mild heteroscedasticity.

Goodness-of-Fit-tests and their p-values: Selecting an
accurate distribution model for pollutants like Os, PMio and
PM..s is crucial for reliable predictions. This study compares

https://doi.org/10.25303/294rjce039056

the three-parameter Burr type XII, Log-Logistic and Dagum
type | distributions using K-S, C-VM and A-D tests. The p-
values from these tests indicate how well the observed data
fits each model, helping to identify the best distribution for
each pollutant. Table 10 summarizes these findings.

The analysis presented in table 10 evaluates the suitability of
different distributions for modeling air pollutant
concentrations. For Os, the Burr type XII 3P distribution is
the best fit, with lower KS (0.0245), CVM (0.1198) and AD
(1.7585) statistics and higher p-values (0.2819, 0.4964,
0.1252), indicating a close match with the observed data. For
PM o, the Dagum type I 3P distribution shows the strongest
fit, with the lowest test statistics (KS=0.0185, CVM=0.0943,
AD=0.8719) and the highest p-values (0.6326, 0.6136,
0.4319).
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Figure 10: Diagnostic Plots for Burr Type XII 3P, Log-Logistic 3P and Dagum Type | 3P Models

Table 10

Goodness of Fit Statistics and their p-values for Oz, PMig and PM3 s over each distributions
Air Distributions KS CVM AD p-value | p-value | p-value

Pollutant (D) (W23 (A2 (KS) (CVM) (AD)
O3 Burr Type XI11 3P | 0.0245 | 0.1198 | 1.7585 | 0.2819 0.4964 0.1252
Log-Logistic 3P 0.0279 | 0.1560 | 1.9490 | 0.1582 0.3717 0.0980

Dagum Type | 3P | 0.0255 | 0.1448 | 1.8230 | 0.2390 0.4059 0.1152

PMig Burr Type XI11 3P | 0.0216 | 0.1613 | 1.1536 | 0.4332 0.3570 0.2859
Log-Logistic 3P 0.0244 | 0.1872 | 1.8744 | 0.2861 0.2936 0.1078

Dagum Type | 3P | 0.0185 | 0.0943 | 0.8719 | 0.6326 0.6136 0.4319

PMas Burr Type XI11 3P | 0.0491 | 0.6635 | 3.8820 | 0.0008 0.0156 0.0099
Log-Logistic 3P 0.0399 | 0.4657 | 3.0548 | 0.0113 0.0487 0.0257

Dagum Type | 3P | 0.0402 | 0.4901 | 3.1655 | 0.0103 0.0422 0.0226

https://doi.org/10.25303/294rjce039056

52



Research Journal of Chemistry and Environment

Residuals vs.Predicted Burr XIl PM2.5

Residuals

e

Frequency

Histogram of Residuals Burr XIl PM2.5

QQ Plot of Residuals Burr XIl PM2.5

Vol. 29 (4) April (2025)
Res. J. Chem. Environ.

Scale-Location PM2.5

0

-6e-13
1

50

T T T
100 150 200

Fitted Values

Residuals vs.Predicted Log-Logistic PM2.5

Residuals

o
o
@

.

o

Residuals

Histogram of Residuals Log-Logistic PM2.5

b

Sample Quantile

-6e-13
L

2613 00 2613 §

302 4 0 1

Theoretical Quantiles

QQ Plot of Residuals Log-Logistic PM2.5

De+00

50 100

150

predicted_pm2.5bur

Scale-Location PM2.5

-1e-12
1

T
0

T
50

Frequency

T T T
100 150 200

Fitted Values

Residuals vs.Predicted Dagum | PM2.5

Residuals

T

Frequency

o
o
@
o

I 1
le-12 -5e-13

Residuals

Histogram of Residuals Dagum | PM2.5

b

1
0e+00

Sample Quantiles
-1e-12
L

Theoretical Quantiles

QQ Plot of Residuals Dagum | PM2.5

sqrt(abs(residuals_pmz2.5qll) sqrt(abs(residuals_pmz2.5gbur
Oe+00

50 100

predicted_pm2.5Il

150 200

Scale-Location PM2.5

oe+00

-3e-13
i

-3e-13
g

T
0

T
50

T T "
100 150 200

Fitted Values

[ T T T T
-3e-13 1e-13 1e13

Residuals

T 1
313

Sample Quantiles

Theoretical Quantiles

rt(abs(residuals_pm2.5qdgr

50 100

Yk e

150

200

predicted_pm2.5dgm

Figure 11: Diagnostic Plots for Burr Type XI1 3P, Log-Logistic 3P and Dagum Type | 3P Models
for PM:.s Concentrations

Table 11

Model Selection Results for Os, PMio and PM..s.

Pollutants Distributions LL AIC BIC HQIC CAIC ABIC

O3 Burr Type XI1 3P | -6843.409 | 13692.82 13709 13698.82 13712 13709.00
Log-Logistic 3P -6835.94 | 13677.88 | 13694.06 | 13683.88 | 13697.06 | 13694.07

Dagum Type | 3P | -6842.995 | 13691.99 | 13708.17 | 13697.99 | 13711.17 | 13708.18

PMio Burr Type XII 3P -8591.42 | 17188.84 | 17205.02 | 17194.84 | 17208.02 | 17205.03
Log-Logistic 3P -8603.301 | 17212.60 | 17228.79 | 17218.61 | 17231.79 | 17228.79

Dagum Type | 3P | -8592.983 | 17191.97 | 17208.15 | 17197.97 | 17211.15 | 17208.15

PM2s Burr Type XI11 3P | -7422.437 | 14850.87 | 14867.06 | 14856.88 | 14870.06 | 14867.06
Log-Logistic 3P -7422.652 | 14851.3 | 14867.49 | 14857.31 | 14870.49 | 14867.49

Dagum Type | 3P | -7423.451 | 14852.90 | 14869.08 | 14858.91 | 14872.08 | 14869.09

In contrast, for PM,s, the Log-Logistic 3P distribution,
despite showing significant deviations (KS (0.0399) p-value:
0.0113, CVM (0.4657) p-value: 0.0487, AD (3.0548) p-
value: 0.0257), exhibited relatively lowest test statistics and
higher p-values compared to the Burr type XII 3P model,
indicating a better fit overall. These results indicate that
alternative customizing approaches may be necessary for
PM,s. Overall, the findings emphasize the importance of
selecting appropriate distributions based on rigorous
statistical tests to achieve accurate air quality pattern.

Model Selection Criteria: The optimal distribution for Os,
PMio and PM.2.s concentrations is identified using model
selection criteria assessing both fit accuracy and model
complexity. This study compares three-parameter
distributions-Burr type XII 3P, Log-Logistic 3P and Dagum
type I 3P based on metrics such as Log-Likelihood (LL), AIC
and BIC and other metrics as shown in table 11. These
criteria guide the selection of the most balanced model for
each pollutant!”.

Table 11 highlights the best-fitting distributions for air
pollutant concentrations based on selection criteria:

https://doi.org/10.25303/294rjce039056

e Os: Log-Logistic 3P, with the lowest AIC (13677.88),
BIC (13694.06) and other metrics, offers the best
balance of fit and complexity.

e PM.o: Burr type XII 3P is optimal, showing the lowest
AIC (17188.84), BIC (17205.02) and related values,
indicating the best fit.

e PM..s: Burr type XII 3P again proves most suitable,
with minimum AIC (14850.87), BIC (14867.06) and
others, accurately capturing PM..s data.

These results underscore the importance of model selection
criteria in reliable modeling pollutant concentrations.

Model Error Metrics: Table 12 provides comprehensive
selection metrics for evaluating the fit of Burr Type XII 3P,
Log-Logistic 3P and Dagum type | 3P distributions to model
03, PMio and PMz.s concentrations. Metrics include MBE,
MAE, MSE, MdAE, MAPE, RMSE, NRMSE, CV-RMSE
and R, all of which assess model accuracy and predictive
capability. These metrics collectively offer detailed insights
into each model's performance, facilitating precise
distribution selection for pollutant concentration data®.
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Table 12 highlights distinct distribution preferences for
modeling air pollutants:

Os: The Burr type XII 3P distribution shows the lowest
errors (MBE: -1.3e-15, MAE: 5.6e-15, MSE: 3.4e-28)
and high consistency, despite a low R?, indicating an
optimal fit for Os data.

PMio: The Dagum type | 3P distribution performs best
with minimal errors (MBE: -2.7e-15, MAE: 1.6e-14,
MSE: 1.2e-27) and reliable metrics, proving suitable for
PMao.

PM..s: Dagum type | 3P provides the most accurate fit
overall for PMz.s, despite the Log-Logistic 3P models
lower RMSE and NRMSE in some aspects.

Res. J. Chem. Environ.

These findings underscore the importance of using multiple
metrics to determine the best-fitting model for accurate air
quality analysis: Burr type XII 3P for Os, Dagum type | 3P
for PMio and Dagum type I 3P for PMa.s.

Model Selection with Cross-Validation: The Cross-
validation process evaluated the performance of the Burr
type XII 3P, Dagum type | 3P and Log-Logistic 3P
distributions for Os, PMio and PMa.s. Each dataset was split
into 70% for training and 30% for testing to assess model fit
and predictive accuracy. Performance was measured using
metrics such as Log-Likelihood (L-L), AIC, BIC, MSE,
MAE, RMSE, MedAE, MAPE, Rz and goodness-of-fit tests

(KS, CVM and AD Tests), as displayed in table 13.

Table 12
Model Error Metrics for Oz, PMip and PM; s vs. Each Model Distribution
Os PMio PM:s
Modgl Burr ng-_ Dagum Burr Lo_g-. Dagum Burr ng-_ Dagum
Metrics Type XII | Logistic Tvpe | 3P Type XII | Logistic Type Type X1l | Logistic Type
3p 3P ype el 3P 13p 3p 3p 1 3P
MBE -1.3e1 -8.7¢16 6.6e16 -2.7e15 -2.2¢18 2.6e15 2.4e15 1.4e% -7.9¢16
MAE 5.6e15 9.0e1 5.3e'1 1.6e4 3.2¢'H 9.4e15 7.1e15 9.3e1% 5.1e’1%
MSE 3.4e28 1.2e%7 2.7¢% 1.2e% 4.5e?7 1.5e% 5.9¢%8 1.3e% 3.2e%8
MdAE 1.8e1° 1.8e1° 8.9¢16 7.1e1° 2.8e14 0.0e*00 3.6e1° 3.6e1° 0.0e*00
MAPE 1.8e 4 1.7¢%4 1.1e4 2.2¢14 2.5e14 5.6e1% 1.7¢4 1.4e4 6.6e1°
RMSE 1.8e 4 3.5e14 1.7¢4 3.5e14 6.7¢14 3.9e14 2.4e14 3.6e14 1.8e4
NRMSE 1.2e16 2.2¢716 1.0e16 9.5e7 1.8e16 1.1e16 1.2e16 1.8e16 8.8eY’
CV-RMSE 6.6e1° 1.3e1° 6.0e16 3.1e%6 6.1e16 3.6e716 5.3¢716 7.9¢716 4.0e16
R? -1.6e*%0 -4.5*2° -2.0e*%0 -2.3e*%0 -6.2e*%° -1.8e*%0 -1.3e%%0 -6.1e*%° -2.5e*%0
Table 13
Cross-Validation Summary for Oz, PM1, PM3 s across Each Distribution
O3 PMo PMzs
Mode_:l Burr Dagum Log- Burr Dagum Log- Burr Dagum Log-
Metric Type XI1 Type | Logistic | Type XII Type | Logistic | Type XII Type | Logistic
3P 3P 3P 3P 3P 3P 3P 3P 3P
L-L -4768.32 | -4769.32 | -4764.12 | -5992.97 | -5994.64 | -5997.70 | -5145.85 | -5147.52 | -5146.99
AIC 9542.65 | 9544.64 | 9534.25 | 11991.94 | 11995.28 | 12001.40 | 10297.71 | 10301.04 | 10299.99
BIC 9557.76 | 9559.75 | 9549.36 | 12007.05 | 12010.39 | 12016.52 | 10312.82 | 10316.15 | 10315.10
MSE 1.94¢06 2.91e% 4.25¢% 1.64e"7 1.21e"7 1.41e"7 2.17xe% | 2.43xe® | 2.41xe™t
MAE 0.0009 0.0011 0.0012 0.0003 0.0003 0.0003 0.0009 0.0010 0.0011
RMSE 0.0014 0.0017 0.0021 0.0004 0.0004 0.0004 0.0015 0.0016 0.0016
MedAE 0.00054 | 0.00053 | 0.00051 0.0003 0.0002 0.0002 0.0006 0.0008 0.0008
MAPE (%) 64.600 73.270 80.660 108.462 128.254 140.802 37.406 42.177 43.476
R2 0.9755 0.9632 0.9463 0.9823 0.9869 0.9848 0.9340 0.9260 0.9260
KS Test 0.0457 0.0549 0.0608 0.0477 0.0438 0.0479 0.0844 0.0825 0.0804
(p-value) (0.2590) | (0.1049) | (0.0535) | (0.2166) | (0.3058) | (0.2109) | (0.0019) | (0.0026) | (0.0036)
CVM Test 0.3067 0.3761 0.4231 0.2763 0.2489 0.2643 0.7303 0.6953 0.6585
(p-value) (0.1295) | (0.0836) | (0.0628) | (0.1578) | (0.1898) | (0.1711) | (0.0107) | (0.0130) | (0.0160)
AD Test 2.4952 2.3502 2.2969 2.0885 1.8695 1.7259 4.9419 4.3918 4.1107
(p-value) (0.0498) | (0.0595) | (0.0635) | (0.0822) | (0.1085) | (0.1307) | (0.0030) | (0.0056) | (0.0077)
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Table 14
Performance Metrics and Goodness-of-Fit Tests for O3, PM;y and PM; s using 10-Fold Cross-Validation
(0 2} PM;y PM;5

Average Burr Dagum Log- Burr Dagum Log- | gyrr Type | Dagum Log-
Metrics Ty%ePXII Type | 3P Logllastlc Typ3ePXII Type | 3P Loglljtlc X11 3P Type | 3P Log:jtlc
MSE 8.23e0° 8.38e05 7.98e0° 1.47¢08 1.45¢% 1.56e% 6.40xe 6 6.51xe 6 6.45xe 6

MAE 0.0051 0.0052 0.0051 0.0009 0.0009 0.0009 0.0017 0.0017 0.0017

RMSE 0.0068 0.0070 0.0069 0.0012 0.0012 0.0012 0.0024 0.0024 0.0024
MAPE (%) 56.4207 55.2689 54.0315 8618 9864 1064 6.38x1012 | 7.53x1012 | 7.72x10%2

R2 0.6272 0.5957 0.5953 0.8117 0.8058 0.7870 0.7788 0.7661 0.7681

MedAE 0.0037 0.0037 0.0036 0.0007 0.0007 0.0007 0.0012 0.0012 0.0012
L-L -6156.37 | -6155.80 | -6149.89 | -7731.36 | -7732.77 | -7737.26 -6679.44 -6680.42 -6679.81
AIC 12318.75 12317.6 12305.78 | 15468.71 | 15471.54 | 15480.52 | 13364.88 13366.84 | 13365.62
BIC 12334.62 | 12333.47 | 12321.65 | 15484.58 | 15487.41 | 15496.38 | 13380.75 13382.71 | 13381.49

KS 0.2369 0.2372 0.2345 0.1407 0.1401 0.1398 0.1529 0.1484 0.1481

CVM 4.7967 4.8325 4.7802 1.1815 1.1744 1.1777 1.1390 1.1018 1.1017

AD 25.7533 25.9662 25.6969 7.0657 6.9741 7.0152 6.7643 6.5188 6.5155

Table 13 evaluates the performance of Burr Type XII 3P, also excels in Log-Likelihood (-7731.36), AIC

Dagum Type | 3P and Log-Logistic 3P distributions for Os,

PMo and PMa.s:

e  Os: The Log-Logistic 3P model achieves the highest
Log-Likelihood (LL: -4764.12) and the lowest AIC
(9534.25) and BIC (9549.36), indicating a good fit.
However, the Burr type XII 3P model excels in
prediction accuracy with the lowest MSE (1.94e-06),
MAE (0.0009), RMSE (0.0014) and the highest R2
(0.9755), making it the most suitable distribution for
Os.

e  PMio: The Dagum type | 3P model offers the best fit,
with the lowest AIC (11995.28) and BIC (12010.39)
and the highest R2 (0.9869). It also shows the lowest
MSE (1.21e-07), MAE (0.0003) and RMSE (0.0004),
confirming its optimal choice for PMio.

e  PMo..s: The Burr type XII 3P distribution provides the
best overall performance, with the lowest AIC
(10297.71), BIC (10312.82), MSE (2.17¢—6), MAE
(0.0009) and RMSE (0.0015). Despite similar R2 values
for Dagum type | 3P and Log-Logistic 3P (0.9260),
Burr type XII 3P outperforms in goodness-of-fit tests.
Overall, Burr type XII 3P is preferred for Os and PM..s;
while Dagum type I 3P is optimal for PMo.

Table 14 presents the 10-fold cross-validation results for Os,
PMio and PM-z.s, revealing distinct model performance
patterns:

e Os: The Log-Logistic 3P distribution emerges as the best
model for predictive accuracy, with the lowest MSE
(7.98e-05), MAE (0.0051) and RMSE (0.0069).
Although Log-Likelihood (-6149.89) is higher and AIC
(12305.78) and BIC (12321.65) values are lower than
those of the Burr type XII 3P distribution, its superior
predictive accuracy makes it the preferred choice.

e PMo: The Burr type XII 3P distribution is most effective,
achieving the lowest MSE (1.47e-06), MAE (0.0009) and
RMSE (0.0012), along with the highest R? (0.8117). It

https://doi.org/10.25303/294rjce039056

(15468.71) and BIC (15484.58) metrics, supported by
strong goodness-of-fit results in KS (0.1407) and CVM
(1.1815) tests.

e PM.:.s: The Burr type XII 3P distribution is again the

most suitable model, with the lowest MSE (6.40e-6),
MAE (0.0017) and RMSE (0.0024), alongside the
highest R? (0.7788). It performs well in Log-Likelihood
(-6679.44), AIC (13364.88) and BIC (13380.75), further
confirmed by other statistical measures.

Overall, while the Log-Logistic 3P distribution is optimal for
O; due to its predictive accuracy, the Burr type XII 3P
distribution consistently outperforms other models for PMio
and PMo..s across multiple metrics.

Conclusion

This research evaluated the suitability of three flexible
probability distributions-Burr type XII 3P, Dagum type | 3P
and Log-Logistic 3P-for modeling the concentrations of
secondary pollutants Os, PMio and PM..s in Visakhapatnam,
a rapidly industrializing city in India. Using robust statistical
techniques, the analysis highlights that the Burr type XII 3P
distribution is the most effective in capturing the heavy-
tailed distribution of Os concentrations.

The Dagum type 1 3P proves optimal for PMio
concentrations due to its ability to model moderate
variability and skewness, while both Burr type XII 3P and
Log-Logistic 3P distributions provided reliable models for
PM:.s. These models offer a valuable basis for improving air
quality assessments and targeted pollution control in similar
mid-sized cities. Future studies could apply these models to
other urban areas and to explore seasonal variations to
further enhance air quality predictions. This work supports
environmental management efforts to address the public
health challenges posed by pollution in growing urban
regions.
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